Module keras.legacy_tf_layers.convolutional

Contains the convolutional layer classes and their functional aliases.

Expand source code
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
# pylint: disable=g-classes-have-attributes
"""Contains the convolutional layer classes and their functional aliases."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow.compat.v2 as tf

import warnings

from keras import layers as keras_layers
from keras.legacy_tf_layers import base
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export


@keras_export(v1=['keras.__internal__.legacy.layers.Conv1D'])
@tf_export(v1=['layers.Conv1D'])
class Conv1D(keras_layers.Conv1D, base.Layer):
  """1D convolution layer (e.g. temporal convolution).

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of a single integer, specifying the
      length of the 1D convolution window.
    strides: An integer or tuple/list of a single integer,
      specifying the stride length of the convolution.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, length, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, length)`.
    dilation_rate: An integer or tuple/list of a single integer, specifying
      the dilation rate to use for dilated convolution.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any `strides` value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.

  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv1D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv1D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv1D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=1,
               padding='valid',
               data_format='channels_last',
               dilation_rate=1,
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv1D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name, **kwargs)


@keras_export(v1=['keras.__internal__.legacy.layers.conv1d'])
@tf_export(v1=['layers.conv1d'])
def conv1d(inputs,
           filters,
           kernel_size,
           strides=1,
           padding='valid',
           data_format='channels_last',
           dilation_rate=1,
           activation=None,
           use_bias=True,
           kernel_initializer=None,
           bias_initializer=tf.compat.v1.zeros_initializer(),
           kernel_regularizer=None,
           bias_regularizer=None,
           activity_regularizer=None,
           kernel_constraint=None,
           bias_constraint=None,
           trainable=True,
           name=None,
           reuse=None):
  """Functional interface for 1D convolution layer (e.g. temporal convolution).

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    inputs: Tensor input.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of a single integer, specifying the
      length of the 1D convolution window.
    strides: An integer or tuple/list of a single integer,
      specifying the stride length of the convolution.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, length, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, length)`.
    dilation_rate: An integer or tuple/list of a single integer, specifying
      the dilation rate to use for dilated convolution.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any `strides` value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv1D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv1d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv1D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv1d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv1D` instead.')
  layer = Conv1D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)


@keras_export(v1=['keras.__internal__.legacy.layers.Conv2D'])
@tf_export(v1=['layers.Conv2D'])
class Conv2D(keras_layers.Conv2D, base.Layer):
  """2D convolution layer (e.g. spatial convolution over images).

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 2 integers, specifying the
      height and width of the 2D convolution window.
      Can be a single integer to specify the same value for
      all spatial dimensions.
    strides: An integer or tuple/list of 2 integers,
      specifying the strides of the convolution along the height and width.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.

    dilation_rate: An integer or tuple/list of 2 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv2D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv2D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format='channels_last',
               dilation_rate=(1, 1),
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv2D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name, **kwargs)


@keras_export(v1=['keras.__internal__.legacy.layers.conv2d'])
@tf_export(v1=['layers.conv2d'])
def conv2d(inputs,
           filters,
           kernel_size,
           strides=(1, 1),
           padding='valid',
           data_format='channels_last',
           dilation_rate=(1, 1),
           activation=None,
           use_bias=True,
           kernel_initializer=None,
           bias_initializer=tf.compat.v1.zeros_initializer(),
           kernel_regularizer=None,
           bias_regularizer=None,
           activity_regularizer=None,
           kernel_constraint=None,
           bias_constraint=None,
           trainable=True,
           name=None,
           reuse=None):
  """Functional interface for the 2D convolution layer.

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    inputs: Tensor input.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 2 integers, specifying the
      height and width of the 2D convolution window.
      Can be a single integer to specify the same value for
      all spatial dimensions.
    strides: An integer or tuple/list of 2 integers,
      specifying the strides of the convolution along the height and width.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.

    dilation_rate: An integer or tuple/list of 2 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv2d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv2D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv2d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv2D` instead.')
  layer = Conv2D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)


@keras_export(v1=['keras.__internal__.legacy.layers.Conv3D'])
@tf_export(v1=['layers.Conv3D'])
class Conv3D(keras_layers.Conv3D, base.Layer):
  """3D convolution layer (e.g. spatial convolution over volumes).

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 3 integers, specifying the
      depth, height and width of the 3D convolution window.
      Can be a single integer to specify the same value for
      all spatial dimensions.
    strides: An integer or tuple/list of 3 integers,
      specifying the strides of the convolution along the depth,
      height and width.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    dilation_rate: An integer or tuple/list of 3 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv3D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv3D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1, 1),
               padding='valid',
               data_format='channels_last',
               dilation_rate=(1, 1, 1),
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv3D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name, **kwargs)


@keras_export(v1=['keras.__internal__.legacy.layers.conv3d'])
@tf_export(v1=['layers.conv3d'])
def conv3d(inputs,
           filters,
           kernel_size,
           strides=(1, 1, 1),
           padding='valid',
           data_format='channels_last',
           dilation_rate=(1, 1, 1),
           activation=None,
           use_bias=True,
           kernel_initializer=None,
           bias_initializer=tf.compat.v1.zeros_initializer(),
           kernel_regularizer=None,
           bias_regularizer=None,
           activity_regularizer=None,
           kernel_constraint=None,
           bias_constraint=None,
           trainable=True,
           name=None,
           reuse=None):
  """Functional interface for the 3D convolution layer.

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    inputs: Tensor input.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 3 integers, specifying the
      depth, height and width of the 3D convolution window.
      Can be a single integer to specify the same value for
      all spatial dimensions.
    strides: An integer or tuple/list of 3 integers,
      specifying the strides of the convolution along the depth,
      height and width.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    dilation_rate: An integer or tuple/list of 3 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv3d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv3D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv3d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv3D` instead.')
  layer = Conv3D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)


@keras_export(v1=['keras.__internal__.legacy.layers.SeparableConv1D'])
@tf_export(v1=['layers.SeparableConv1D'])
class SeparableConv1D(keras_layers.SeparableConv1D, base.Layer):
  """Depthwise separable 1D convolution.

  This layer performs a depthwise convolution that acts separately on
  channels, followed by a pointwise convolution that mixes channels.
  If `use_bias` is True and a bias initializer is provided,
  it adds a bias vector to the output.
  It then optionally applies an activation function to produce the final output.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A single integer specifying the spatial
      dimensions of the filters.
    strides: A single integer specifying the strides
      of the convolution.
      Specifying any `stride` value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, length, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, length)`.
    dilation_rate: A single integer, specifying
      the dilation rate to use for dilated convolution.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    depth_multiplier: The number of depthwise convolution output channels for
      each input channel. The total number of depthwise convolution output
      channels will be equal to `num_filters_in * depth_multiplier`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    depthwise_initializer: An initializer for the depthwise convolution kernel.
    pointwise_initializer: An initializer for the pointwise convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    depthwise_regularizer: Optional regularizer for the depthwise
      convolution kernel.
    pointwise_regularizer: Optional regularizer for the pointwise
      convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    depthwise_constraint: Optional projection function to be applied to the
        depthwise kernel after being updated by an `Optimizer` (e.g. used for
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    pointwise_constraint: Optional projection function to be applied to the
        pointwise kernel after being updated by an `Optimizer`.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.SeparableConv1D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.SeparableConv1D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.SeparableConv1D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=1,
               padding='valid',
               data_format='channels_last',
               dilation_rate=1,
               depth_multiplier=1,
               activation=None,
               use_bias=True,
               depthwise_initializer=None,
               pointwise_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               depthwise_regularizer=None,
               pointwise_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               depthwise_constraint=None,
               pointwise_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(SeparableConv1D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        depth_multiplier=depth_multiplier,
        activation=activation,
        use_bias=use_bias,
        depthwise_initializer=depthwise_initializer,
        pointwise_initializer=pointwise_initializer,
        bias_initializer=bias_initializer,
        depthwise_regularizer=depthwise_regularizer,
        pointwise_regularizer=pointwise_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        depthwise_constraint=depthwise_constraint,
        pointwise_constraint=pointwise_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)


@keras_export(v1=['keras.__internal__.legacy.layers.SeparableConv2D'])
@tf_export(v1=['layers.SeparableConv2D'])
class SeparableConv2D(keras_layers.SeparableConv2D, base.Layer):
  """Depthwise separable 2D convolution.

  This layer performs a depthwise convolution that acts separately on
  channels, followed by a pointwise convolution that mixes channels.
  If `use_bias` is True and a bias initializer is provided,
  it adds a bias vector to the output.
  It then optionally applies an activation function to produce the final output.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any `stride` value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.

    dilation_rate: An integer or tuple/list of 2 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    depth_multiplier: The number of depthwise convolution output channels for
      each input channel. The total number of depthwise convolution output
      channels will be equal to `num_filters_in * depth_multiplier`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    depthwise_initializer: An initializer for the depthwise convolution kernel.
    pointwise_initializer: An initializer for the pointwise convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    depthwise_regularizer: Optional regularizer for the depthwise
      convolution kernel.
    pointwise_regularizer: Optional regularizer for the pointwise
      convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    depthwise_constraint: Optional projection function to be applied to the
        depthwise kernel after being updated by an `Optimizer` (e.g. used for
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    pointwise_constraint: Optional projection function to be applied to the
        pointwise kernel after being updated by an `Optimizer`.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.SeparableConv2D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.SeparableConv2D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.SeparableConv2D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format='channels_last',
               dilation_rate=(1, 1),
               depth_multiplier=1,
               activation=None,
               use_bias=True,
               depthwise_initializer=None,
               pointwise_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               depthwise_regularizer=None,
               pointwise_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               depthwise_constraint=None,
               pointwise_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(SeparableConv2D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        depth_multiplier=depth_multiplier,
        activation=activation,
        use_bias=use_bias,
        depthwise_initializer=depthwise_initializer,
        pointwise_initializer=pointwise_initializer,
        bias_initializer=bias_initializer,
        depthwise_regularizer=depthwise_regularizer,
        pointwise_regularizer=pointwise_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        depthwise_constraint=depthwise_constraint,
        pointwise_constraint=pointwise_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)


@keras_export(v1=['keras.__internal__.legacy.layers.separable_conv1d'])
@tf_export(v1=['layers.separable_conv1d'])
def separable_conv1d(inputs,
                     filters,
                     kernel_size,
                     strides=1,
                     padding='valid',
                     data_format='channels_last',
                     dilation_rate=1,
                     depth_multiplier=1,
                     activation=None,
                     use_bias=True,
                     depthwise_initializer=None,
                     pointwise_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     depthwise_regularizer=None,
                     pointwise_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     depthwise_constraint=None,
                     pointwise_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for the depthwise separable 1D convolution layer.

  This layer performs a depthwise convolution that acts separately on
  channels, followed by a pointwise convolution that mixes channels.
  If `use_bias` is True and a bias initializer is provided,
  it adds a bias vector to the output.
  It then optionally applies an activation function to produce the final output.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A single integer specifying the spatial
      dimensions of the filters.
    strides: A single integer specifying the strides
      of the convolution.
      Specifying any `stride` value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, length, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, length)`.
    dilation_rate: A single integer, specifying
      the dilation rate to use for dilated convolution.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    depth_multiplier: The number of depthwise convolution output channels for
      each input channel. The total number of depthwise convolution output
      channels will be equal to `num_filters_in * depth_multiplier`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    depthwise_initializer: An initializer for the depthwise convolution kernel.
    pointwise_initializer: An initializer for the pointwise convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    depthwise_regularizer: Optional regularizer for the depthwise
      convolution kernel.
    pointwise_regularizer: Optional regularizer for the pointwise
      convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    depthwise_constraint: Optional projection function to be applied to the
        depthwise kernel after being updated by an `Optimizer` (e.g. used for
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    pointwise_constraint: Optional projection function to be applied to the
        pointwise kernel after being updated by an `Optimizer`.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.SeparableConv1D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.separable_conv1d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.SeparableConv1D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.separable_conv1d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.SeparableConv1D` instead.')
  layer = SeparableConv1D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      depth_multiplier=depth_multiplier,
      activation=activation,
      use_bias=use_bias,
      depthwise_initializer=depthwise_initializer,
      pointwise_initializer=pointwise_initializer,
      bias_initializer=bias_initializer,
      depthwise_regularizer=depthwise_regularizer,
      pointwise_regularizer=pointwise_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      depthwise_constraint=depthwise_constraint,
      pointwise_constraint=pointwise_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)


@keras_export(v1=['keras.__internal__.legacy.layers.separable_conv2d'])
@tf_export(v1=['layers.separable_conv2d'])
def separable_conv2d(inputs,
                     filters,
                     kernel_size,
                     strides=(1, 1),
                     padding='valid',
                     data_format='channels_last',
                     dilation_rate=(1, 1),
                     depth_multiplier=1,
                     activation=None,
                     use_bias=True,
                     depthwise_initializer=None,
                     pointwise_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     depthwise_regularizer=None,
                     pointwise_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     depthwise_constraint=None,
                     pointwise_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for the depthwise separable 2D convolution layer.

  This layer performs a depthwise convolution that acts separately on
  channels, followed by a pointwise convolution that mixes channels.
  If `use_bias` is True and a bias initializer is provided,
  it adds a bias vector to the output.
  It then optionally applies an activation function to produce the final output.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any `stride` value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.

    dilation_rate: An integer or tuple/list of 2 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    depth_multiplier: The number of depthwise convolution output channels for
      each input channel. The total number of depthwise convolution output
      channels will be equal to `num_filters_in * depth_multiplier`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    depthwise_initializer: An initializer for the depthwise convolution kernel.
    pointwise_initializer: An initializer for the pointwise convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    depthwise_regularizer: Optional regularizer for the depthwise
      convolution kernel.
    pointwise_regularizer: Optional regularizer for the pointwise
      convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    depthwise_constraint: Optional projection function to be applied to the
        depthwise kernel after being updated by an `Optimizer` (e.g. used for
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    pointwise_constraint: Optional projection function to be applied to the
        pointwise kernel after being updated by an `Optimizer`.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.SeparableConv2D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.separable_conv2d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.SeparableConv2D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.separable_conv2d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.SeparableConv2D` instead.')
  layer = SeparableConv2D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      depth_multiplier=depth_multiplier,
      activation=activation,
      use_bias=use_bias,
      depthwise_initializer=depthwise_initializer,
      pointwise_initializer=pointwise_initializer,
      bias_initializer=bias_initializer,
      depthwise_regularizer=depthwise_regularizer,
      pointwise_regularizer=pointwise_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      depthwise_constraint=depthwise_constraint,
      pointwise_constraint=pointwise_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)


@keras_export(v1=['keras.__internal__.legacy.layers.Conv2DTranspose'])
@tf_export(v1=['layers.Conv2DTranspose'])
class Conv2DTranspose(keras_layers.Conv2DTranspose, base.Layer):
  """Transposed 2D convolution layer (sometimes called 2D Deconvolution).

  The need for transposed convolutions generally arises
  from the desire to use a transformation going in the opposite direction
  of a normal convolution, i.e., from something that has the shape of the
  output of some convolution to something that has the shape of its input
  while maintaining a connectivity pattern that is compatible with
  said convolution.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv2DTranspose(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format='channels_last',
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv2DTranspose, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)


@keras_export(v1=['keras.__internal__.legacy.layers.conv2d_transpose'])
@tf_export(v1=['layers.conv2d_transpose'])
def conv2d_transpose(inputs,
                     filters,
                     kernel_size,
                     strides=(1, 1),
                     padding='valid',
                     data_format='channels_last',
                     activation=None,
                     use_bias=True,
                     kernel_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     kernel_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     kernel_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for transposed 2D convolution layer.

  The need for transposed convolutions generally arises
  from the desire to use a transformation going in the opposite direction
  of a normal convolution, i.e., from something that has the shape of the
  output of some convolution to something that has the shape of its input
  while maintaining a connectivity pattern that is compatible with
  said convolution.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.
    activation: Activation function. Set it to `None` to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If `None`, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv2d_transpose(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv2d_transpose` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv2DTranspose` instead.')
  layer = Conv2DTranspose(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)


@keras_export(v1=['keras.__internal__.legacy.layers.Conv3DTranspose'])
@tf_export(v1=['layers.Conv3DTranspose'])
class Conv3DTranspose(keras_layers.Conv3DTranspose, base.Layer):
  """Transposed 3D convolution layer (sometimes called 3D Deconvolution).

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 3 integers, specifying the
      depth, height and width of the 3D convolution window.
      Can be a single integer to specify the same value for all spatial
      dimensions.
    strides: An integer or tuple/list of 3 integers, specifying the strides
      of the convolution along the depth, height and width.
      Can be a single integer to specify the same value for all spatial
      dimensions.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    activation: Activation function. Set it to `None` to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If `None`, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv3DTranspose(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self,
               filters,
               kernel_size,
               strides=(1, 1, 1),
               padding='valid',
               data_format='channels_last',
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv3DTranspose, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)


@keras_export(v1=['keras.__internal__.legacy.layers.conv3d_transpose'])
@tf_export(v1=['layers.conv3d_transpose'])
def conv3d_transpose(inputs,
                     filters,
                     kernel_size,
                     strides=(1, 1, 1),
                     padding='valid',
                     data_format='channels_last',
                     activation=None,
                     use_bias=True,
                     kernel_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     kernel_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     kernel_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for transposed 3D convolution layer.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 3 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 3 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv3d_transpose(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv3d_transpose` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv3DTranspose` instead.')
  layer = Conv3DTranspose(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)


# Aliases

Convolution1D = Conv1D
Convolution2D = Conv2D
Convolution3D = Conv3D
SeparableConvolution2D = SeparableConv2D
Convolution2DTranspose = Deconvolution2D = Deconv2D = Conv2DTranspose
Convolution3DTranspose = Deconvolution3D = Deconv3D = Conv3DTranspose
convolution1d = conv1d
convolution2d = conv2d
convolution3d = conv3d
separable_convolution2d = separable_conv2d
convolution2d_transpose = deconvolution2d = deconv2d = conv2d_transpose
convolution3d_transpose = deconvolution3d = deconv3d = conv3d_transpose

Functions

def conv1d(inputs, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for 1D convolution layer (e.g. temporal convolution).

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Args

inputs
Tensor input.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of a single integer, specifying the length of the 1D convolution window.
strides
An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, length, channels) while channels_first corresponds to inputs with shape (batch, channels, length).
dilation_rate
An integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any strides value != 1.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv1D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv1d(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv1D(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv1d'])
@tf_export(v1=['layers.conv1d'])
def conv1d(inputs,
           filters,
           kernel_size,
           strides=1,
           padding='valid',
           data_format='channels_last',
           dilation_rate=1,
           activation=None,
           use_bias=True,
           kernel_initializer=None,
           bias_initializer=tf.compat.v1.zeros_initializer(),
           kernel_regularizer=None,
           bias_regularizer=None,
           activity_regularizer=None,
           kernel_constraint=None,
           bias_constraint=None,
           trainable=True,
           name=None,
           reuse=None):
  """Functional interface for 1D convolution layer (e.g. temporal convolution).

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    inputs: Tensor input.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of a single integer, specifying the
      length of the 1D convolution window.
    strides: An integer or tuple/list of a single integer,
      specifying the stride length of the convolution.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, length, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, length)`.
    dilation_rate: An integer or tuple/list of a single integer, specifying
      the dilation rate to use for dilated convolution.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any `strides` value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv1D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv1d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv1D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv1d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv1D` instead.')
  layer = Conv1D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def conv2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for the 2D convolution layer.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Args

inputs
Tensor input.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv2D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv2d(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv2D(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv2d'])
@tf_export(v1=['layers.conv2d'])
def conv2d(inputs,
           filters,
           kernel_size,
           strides=(1, 1),
           padding='valid',
           data_format='channels_last',
           dilation_rate=(1, 1),
           activation=None,
           use_bias=True,
           kernel_initializer=None,
           bias_initializer=tf.compat.v1.zeros_initializer(),
           kernel_regularizer=None,
           bias_regularizer=None,
           activity_regularizer=None,
           kernel_constraint=None,
           bias_constraint=None,
           trainable=True,
           name=None,
           reuse=None):
  """Functional interface for the 2D convolution layer.

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    inputs: Tensor input.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 2 integers, specifying the
      height and width of the 2D convolution window.
      Can be a single integer to specify the same value for
      all spatial dimensions.
    strides: An integer or tuple/list of 2 integers,
      specifying the strides of the convolution along the height and width.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.

    dilation_rate: An integer or tuple/list of 2 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv2d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv2D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv2d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv2D` instead.')
  layer = Conv2D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def conv2d_transpose(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for transposed 2D convolution layer.

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.

Args

inputs
Input tensor.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
padding
one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv2DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv2d_transpose(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv2d_transpose'])
@tf_export(v1=['layers.conv2d_transpose'])
def conv2d_transpose(inputs,
                     filters,
                     kernel_size,
                     strides=(1, 1),
                     padding='valid',
                     data_format='channels_last',
                     activation=None,
                     use_bias=True,
                     kernel_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     kernel_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     kernel_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for transposed 2D convolution layer.

  The need for transposed convolutions generally arises
  from the desire to use a transformation going in the opposite direction
  of a normal convolution, i.e., from something that has the shape of the
  output of some convolution to something that has the shape of its input
  while maintaining a connectivity pattern that is compatible with
  said convolution.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.
    activation: Activation function. Set it to `None` to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If `None`, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv2d_transpose(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv2d_transpose` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv2DTranspose` instead.')
  layer = Conv2DTranspose(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def conv3d(inputs, filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for the 3D convolution layer.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Args

inputs
Tensor input.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides
An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, depth, height, width).
dilation_rate
An integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv3D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv3d(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv3D(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv3d'])
@tf_export(v1=['layers.conv3d'])
def conv3d(inputs,
           filters,
           kernel_size,
           strides=(1, 1, 1),
           padding='valid',
           data_format='channels_last',
           dilation_rate=(1, 1, 1),
           activation=None,
           use_bias=True,
           kernel_initializer=None,
           bias_initializer=tf.compat.v1.zeros_initializer(),
           kernel_regularizer=None,
           bias_regularizer=None,
           activity_regularizer=None,
           kernel_constraint=None,
           bias_constraint=None,
           trainable=True,
           name=None,
           reuse=None):
  """Functional interface for the 3D convolution layer.

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    inputs: Tensor input.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 3 integers, specifying the
      depth, height and width of the 3D convolution window.
      Can be a single integer to specify the same value for
      all spatial dimensions.
    strides: An integer or tuple/list of 3 integers,
      specifying the strides of the convolution along the depth,
      height and width.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    dilation_rate: An integer or tuple/list of 3 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv3d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv3D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv3d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv3D` instead.')
  layer = Conv3D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def conv3d_transpose(inputs, filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for transposed 3D convolution layer.

Args

inputs
Input tensor.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 3 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 3 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
padding
one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, depth, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv3DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv3d_transpose(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv3d_transpose'])
@tf_export(v1=['layers.conv3d_transpose'])
def conv3d_transpose(inputs,
                     filters,
                     kernel_size,
                     strides=(1, 1, 1),
                     padding='valid',
                     data_format='channels_last',
                     activation=None,
                     use_bias=True,
                     kernel_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     kernel_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     kernel_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for transposed 3D convolution layer.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 3 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 3 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv3d_transpose(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv3d_transpose` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv3DTranspose` instead.')
  layer = Conv3DTranspose(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def convolution1d(inputs, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for 1D convolution layer (e.g. temporal convolution).

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Args

inputs
Tensor input.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of a single integer, specifying the length of the 1D convolution window.
strides
An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, length, channels) while channels_first corresponds to inputs with shape (batch, channels, length).
dilation_rate
An integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any strides value != 1.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv1D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv1d(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv1D(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv1d'])
@tf_export(v1=['layers.conv1d'])
def conv1d(inputs,
           filters,
           kernel_size,
           strides=1,
           padding='valid',
           data_format='channels_last',
           dilation_rate=1,
           activation=None,
           use_bias=True,
           kernel_initializer=None,
           bias_initializer=tf.compat.v1.zeros_initializer(),
           kernel_regularizer=None,
           bias_regularizer=None,
           activity_regularizer=None,
           kernel_constraint=None,
           bias_constraint=None,
           trainable=True,
           name=None,
           reuse=None):
  """Functional interface for 1D convolution layer (e.g. temporal convolution).

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    inputs: Tensor input.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of a single integer, specifying the
      length of the 1D convolution window.
    strides: An integer or tuple/list of a single integer,
      specifying the stride length of the convolution.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, length, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, length)`.
    dilation_rate: An integer or tuple/list of a single integer, specifying
      the dilation rate to use for dilated convolution.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any `strides` value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv1D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv1d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv1D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv1d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv1D` instead.')
  layer = Conv1D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def convolution2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for the 2D convolution layer.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Args

inputs
Tensor input.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv2D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv2d(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv2D(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv2d'])
@tf_export(v1=['layers.conv2d'])
def conv2d(inputs,
           filters,
           kernel_size,
           strides=(1, 1),
           padding='valid',
           data_format='channels_last',
           dilation_rate=(1, 1),
           activation=None,
           use_bias=True,
           kernel_initializer=None,
           bias_initializer=tf.compat.v1.zeros_initializer(),
           kernel_regularizer=None,
           bias_regularizer=None,
           activity_regularizer=None,
           kernel_constraint=None,
           bias_constraint=None,
           trainable=True,
           name=None,
           reuse=None):
  """Functional interface for the 2D convolution layer.

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    inputs: Tensor input.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 2 integers, specifying the
      height and width of the 2D convolution window.
      Can be a single integer to specify the same value for
      all spatial dimensions.
    strides: An integer or tuple/list of 2 integers,
      specifying the strides of the convolution along the height and width.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.

    dilation_rate: An integer or tuple/list of 2 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv2d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv2D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv2d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv2D` instead.')
  layer = Conv2D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def convolution2d_transpose(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for transposed 2D convolution layer.

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.

Args

inputs
Input tensor.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
padding
one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv2DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv2d_transpose(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv2d_transpose'])
@tf_export(v1=['layers.conv2d_transpose'])
def conv2d_transpose(inputs,
                     filters,
                     kernel_size,
                     strides=(1, 1),
                     padding='valid',
                     data_format='channels_last',
                     activation=None,
                     use_bias=True,
                     kernel_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     kernel_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     kernel_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for transposed 2D convolution layer.

  The need for transposed convolutions generally arises
  from the desire to use a transformation going in the opposite direction
  of a normal convolution, i.e., from something that has the shape of the
  output of some convolution to something that has the shape of its input
  while maintaining a connectivity pattern that is compatible with
  said convolution.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.
    activation: Activation function. Set it to `None` to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If `None`, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv2d_transpose(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv2d_transpose` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv2DTranspose` instead.')
  layer = Conv2DTranspose(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def convolution3d(inputs, filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for the 3D convolution layer.

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Args

inputs
Tensor input.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides
An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, depth, height, width).
dilation_rate
An integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv3D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv3d(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv3D(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv3d'])
@tf_export(v1=['layers.conv3d'])
def conv3d(inputs,
           filters,
           kernel_size,
           strides=(1, 1, 1),
           padding='valid',
           data_format='channels_last',
           dilation_rate=(1, 1, 1),
           activation=None,
           use_bias=True,
           kernel_initializer=None,
           bias_initializer=tf.compat.v1.zeros_initializer(),
           kernel_regularizer=None,
           bias_regularizer=None,
           activity_regularizer=None,
           kernel_constraint=None,
           bias_constraint=None,
           trainable=True,
           name=None,
           reuse=None):
  """Functional interface for the 3D convolution layer.

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    inputs: Tensor input.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 3 integers, specifying the
      depth, height and width of the 3D convolution window.
      Can be a single integer to specify the same value for
      all spatial dimensions.
    strides: An integer or tuple/list of 3 integers,
      specifying the strides of the convolution along the depth,
      height and width.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    dilation_rate: An integer or tuple/list of 3 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv3d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv3D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv3d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv3D` instead.')
  layer = Conv3D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def convolution3d_transpose(inputs, filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for transposed 3D convolution layer.

Args

inputs
Input tensor.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 3 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 3 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
padding
one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, depth, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv3DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv3d_transpose(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv3d_transpose'])
@tf_export(v1=['layers.conv3d_transpose'])
def conv3d_transpose(inputs,
                     filters,
                     kernel_size,
                     strides=(1, 1, 1),
                     padding='valid',
                     data_format='channels_last',
                     activation=None,
                     use_bias=True,
                     kernel_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     kernel_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     kernel_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for transposed 3D convolution layer.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 3 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 3 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv3d_transpose(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv3d_transpose` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv3DTranspose` instead.')
  layer = Conv3DTranspose(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def deconv2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for transposed 2D convolution layer.

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.

Args

inputs
Input tensor.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
padding
one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv2DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv2d_transpose(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv2d_transpose'])
@tf_export(v1=['layers.conv2d_transpose'])
def conv2d_transpose(inputs,
                     filters,
                     kernel_size,
                     strides=(1, 1),
                     padding='valid',
                     data_format='channels_last',
                     activation=None,
                     use_bias=True,
                     kernel_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     kernel_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     kernel_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for transposed 2D convolution layer.

  The need for transposed convolutions generally arises
  from the desire to use a transformation going in the opposite direction
  of a normal convolution, i.e., from something that has the shape of the
  output of some convolution to something that has the shape of its input
  while maintaining a connectivity pattern that is compatible with
  said convolution.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.
    activation: Activation function. Set it to `None` to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If `None`, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv2d_transpose(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv2d_transpose` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv2DTranspose` instead.')
  layer = Conv2DTranspose(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def deconv3d(inputs, filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for transposed 3D convolution layer.

Args

inputs
Input tensor.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 3 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 3 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
padding
one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, depth, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv3DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv3d_transpose(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv3d_transpose'])
@tf_export(v1=['layers.conv3d_transpose'])
def conv3d_transpose(inputs,
                     filters,
                     kernel_size,
                     strides=(1, 1, 1),
                     padding='valid',
                     data_format='channels_last',
                     activation=None,
                     use_bias=True,
                     kernel_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     kernel_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     kernel_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for transposed 3D convolution layer.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 3 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 3 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv3d_transpose(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv3d_transpose` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv3DTranspose` instead.')
  layer = Conv3DTranspose(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def deconvolution2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for transposed 2D convolution layer.

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.

Args

inputs
Input tensor.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
padding
one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv2DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv2d_transpose(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv2d_transpose'])
@tf_export(v1=['layers.conv2d_transpose'])
def conv2d_transpose(inputs,
                     filters,
                     kernel_size,
                     strides=(1, 1),
                     padding='valid',
                     data_format='channels_last',
                     activation=None,
                     use_bias=True,
                     kernel_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     kernel_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     kernel_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for transposed 2D convolution layer.

  The need for transposed convolutions generally arises
  from the desire to use a transformation going in the opposite direction
  of a normal convolution, i.e., from something that has the shape of the
  output of some convolution to something that has the shape of its input
  while maintaining a connectivity pattern that is compatible with
  said convolution.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.
    activation: Activation function. Set it to `None` to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If `None`, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv2d_transpose(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv2d_transpose` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv2DTranspose` instead.')
  layer = Conv2DTranspose(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def deconvolution3d(inputs, filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for transposed 3D convolution layer.

Args

inputs
Input tensor.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 3 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 3 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
padding
one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, depth, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv3DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.conv3d_transpose(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.conv3d_transpose'])
@tf_export(v1=['layers.conv3d_transpose'])
def conv3d_transpose(inputs,
                     filters,
                     kernel_size,
                     strides=(1, 1, 1),
                     padding='valid',
                     data_format='channels_last',
                     activation=None,
                     use_bias=True,
                     kernel_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     kernel_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     kernel_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for transposed 3D convolution layer.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 3 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 3 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.conv3d_transpose(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.conv3d_transpose` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.Conv3DTranspose` instead.')
  layer = Conv3DTranspose(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      activation=activation,
      use_bias=use_bias,
      kernel_initializer=kernel_initializer,
      bias_initializer=bias_initializer,
      kernel_regularizer=kernel_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      kernel_constraint=kernel_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def separable_conv1d(inputs, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer=None, pointwise_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for the depthwise separable 1D convolution layer.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If use_bias is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.

Args

inputs
Input tensor.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A single integer specifying the spatial dimensions of the filters.
strides
A single integer specifying the strides of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, length, channels) while channels_first corresponds to inputs with shape (batch, channels, length).
dilation_rate
A single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to num_filters_in * depth_multiplier.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
depthwise_initializer
An initializer for the depthwise convolution kernel.
pointwise_initializer
An initializer for the pointwise convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an Optimizer (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an Optimizer.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.SeparableConv1D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.separable_conv1d(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.SeparableConv1D(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.separable_conv1d'])
@tf_export(v1=['layers.separable_conv1d'])
def separable_conv1d(inputs,
                     filters,
                     kernel_size,
                     strides=1,
                     padding='valid',
                     data_format='channels_last',
                     dilation_rate=1,
                     depth_multiplier=1,
                     activation=None,
                     use_bias=True,
                     depthwise_initializer=None,
                     pointwise_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     depthwise_regularizer=None,
                     pointwise_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     depthwise_constraint=None,
                     pointwise_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for the depthwise separable 1D convolution layer.

  This layer performs a depthwise convolution that acts separately on
  channels, followed by a pointwise convolution that mixes channels.
  If `use_bias` is True and a bias initializer is provided,
  it adds a bias vector to the output.
  It then optionally applies an activation function to produce the final output.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A single integer specifying the spatial
      dimensions of the filters.
    strides: A single integer specifying the strides
      of the convolution.
      Specifying any `stride` value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, length, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, length)`.
    dilation_rate: A single integer, specifying
      the dilation rate to use for dilated convolution.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    depth_multiplier: The number of depthwise convolution output channels for
      each input channel. The total number of depthwise convolution output
      channels will be equal to `num_filters_in * depth_multiplier`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    depthwise_initializer: An initializer for the depthwise convolution kernel.
    pointwise_initializer: An initializer for the pointwise convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    depthwise_regularizer: Optional regularizer for the depthwise
      convolution kernel.
    pointwise_regularizer: Optional regularizer for the pointwise
      convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    depthwise_constraint: Optional projection function to be applied to the
        depthwise kernel after being updated by an `Optimizer` (e.g. used for
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    pointwise_constraint: Optional projection function to be applied to the
        pointwise kernel after being updated by an `Optimizer`.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.SeparableConv1D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.separable_conv1d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.SeparableConv1D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.separable_conv1d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.SeparableConv1D` instead.')
  layer = SeparableConv1D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      depth_multiplier=depth_multiplier,
      activation=activation,
      use_bias=use_bias,
      depthwise_initializer=depthwise_initializer,
      pointwise_initializer=pointwise_initializer,
      bias_initializer=bias_initializer,
      depthwise_regularizer=depthwise_regularizer,
      pointwise_regularizer=pointwise_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      depthwise_constraint=depthwise_constraint,
      pointwise_constraint=pointwise_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def separable_conv2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer=None, pointwise_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for the depthwise separable 2D convolution layer.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If use_bias is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.

Args

inputs
Input tensor.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 2 integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to num_filters_in * depth_multiplier.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
depthwise_initializer
An initializer for the depthwise convolution kernel.
pointwise_initializer
An initializer for the pointwise convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an Optimizer (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an Optimizer.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.SeparableConv2D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.separable_conv2d(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.SeparableConv2D(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.separable_conv2d'])
@tf_export(v1=['layers.separable_conv2d'])
def separable_conv2d(inputs,
                     filters,
                     kernel_size,
                     strides=(1, 1),
                     padding='valid',
                     data_format='channels_last',
                     dilation_rate=(1, 1),
                     depth_multiplier=1,
                     activation=None,
                     use_bias=True,
                     depthwise_initializer=None,
                     pointwise_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     depthwise_regularizer=None,
                     pointwise_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     depthwise_constraint=None,
                     pointwise_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for the depthwise separable 2D convolution layer.

  This layer performs a depthwise convolution that acts separately on
  channels, followed by a pointwise convolution that mixes channels.
  If `use_bias` is True and a bias initializer is provided,
  it adds a bias vector to the output.
  It then optionally applies an activation function to produce the final output.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any `stride` value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.

    dilation_rate: An integer or tuple/list of 2 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    depth_multiplier: The number of depthwise convolution output channels for
      each input channel. The total number of depthwise convolution output
      channels will be equal to `num_filters_in * depth_multiplier`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    depthwise_initializer: An initializer for the depthwise convolution kernel.
    pointwise_initializer: An initializer for the pointwise convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    depthwise_regularizer: Optional regularizer for the depthwise
      convolution kernel.
    pointwise_regularizer: Optional regularizer for the pointwise
      convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    depthwise_constraint: Optional projection function to be applied to the
        depthwise kernel after being updated by an `Optimizer` (e.g. used for
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    pointwise_constraint: Optional projection function to be applied to the
        pointwise kernel after being updated by an `Optimizer`.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.SeparableConv2D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.separable_conv2d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.SeparableConv2D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.separable_conv2d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.SeparableConv2D` instead.')
  layer = SeparableConv2D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      depth_multiplier=depth_multiplier,
      activation=activation,
      use_bias=use_bias,
      depthwise_initializer=depthwise_initializer,
      pointwise_initializer=pointwise_initializer,
      bias_initializer=bias_initializer,
      depthwise_regularizer=depthwise_regularizer,
      pointwise_regularizer=pointwise_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      depthwise_constraint=depthwise_constraint,
      pointwise_constraint=pointwise_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)
def separable_convolution2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer=None, pointwise_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None)

Functional interface for the depthwise separable 2D convolution layer.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If use_bias is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.

Args

inputs
Input tensor.
filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 2 integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to num_filters_in * depth_multiplier.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
depthwise_initializer
An initializer for the depthwise convolution kernel.
pointwise_initializer
An initializer for the pointwise convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an Optimizer (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an Optimizer.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.
reuse
Boolean, whether to reuse the weights of a previous layer by the same name.

Returns

Output tensor.

Raises

ValueError
if eager execution is enabled.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.SeparableConv2D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 y = tf.compat.v1.layers.separable_conv2d(x, filters=3, kernel_size=3)

After:

To migrate code using TF1 functional layers use the [Keras Functional API] (https://www.tensorflow.org/guide/keras/functional):

 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.SeparableConv2D(filters=3, kernels_size=3)(x)
 model = tf.keras.Model(x, y)

@end_compatibility

Expand source code
@keras_export(v1=['keras.__internal__.legacy.layers.separable_conv2d'])
@tf_export(v1=['layers.separable_conv2d'])
def separable_conv2d(inputs,
                     filters,
                     kernel_size,
                     strides=(1, 1),
                     padding='valid',
                     data_format='channels_last',
                     dilation_rate=(1, 1),
                     depth_multiplier=1,
                     activation=None,
                     use_bias=True,
                     depthwise_initializer=None,
                     pointwise_initializer=None,
                     bias_initializer=tf.compat.v1.zeros_initializer(),
                     depthwise_regularizer=None,
                     pointwise_regularizer=None,
                     bias_regularizer=None,
                     activity_regularizer=None,
                     depthwise_constraint=None,
                     pointwise_constraint=None,
                     bias_constraint=None,
                     trainable=True,
                     name=None,
                     reuse=None):
  """Functional interface for the depthwise separable 2D convolution layer.

  This layer performs a depthwise convolution that acts separately on
  channels, followed by a pointwise convolution that mixes channels.
  If `use_bias` is True and a bias initializer is provided,
  it adds a bias vector to the output.
  It then optionally applies an activation function to produce the final output.

  Args:
    inputs: Input tensor.
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any `stride` value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.

    dilation_rate: An integer or tuple/list of 2 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    depth_multiplier: The number of depthwise convolution output channels for
      each input channel. The total number of depthwise convolution output
      channels will be equal to `num_filters_in * depth_multiplier`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    depthwise_initializer: An initializer for the depthwise convolution kernel.
    pointwise_initializer: An initializer for the pointwise convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    depthwise_regularizer: Optional regularizer for the depthwise
      convolution kernel.
    pointwise_regularizer: Optional regularizer for the pointwise
      convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    depthwise_constraint: Optional projection function to be applied to the
        depthwise kernel after being updated by an `Optimizer` (e.g. used for
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    pointwise_constraint: Optional projection function to be applied to the
        pointwise kernel after being updated by an `Optimizer`.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.
    reuse: Boolean, whether to reuse the weights of a previous layer
      by the same name.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.SeparableConv2D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   y = tf.compat.v1.layers.separable_conv2d(x, filters=3, kernel_size=3)
  ```

  After:

  To migrate code using TF1 functional layers use the [Keras Functional API]
  (https://www.tensorflow.org/guide/keras/functional):

  ```python
   x = tf.keras.Input((28, 28, 1))
   y = tf.keras.layers.SeparableConv2D(filters=3, kernels_size=3)(x)
   model = tf.keras.Model(x, y)
  ```
  @end_compatibility
  """
  warnings.warn('`tf.layers.separable_conv2d` is deprecated and '
                'will be removed in a future version. '
                'Please Use `tf.keras.layers.SeparableConv2D` instead.')
  layer = SeparableConv2D(
      filters=filters,
      kernel_size=kernel_size,
      strides=strides,
      padding=padding,
      data_format=data_format,
      dilation_rate=dilation_rate,
      depth_multiplier=depth_multiplier,
      activation=activation,
      use_bias=use_bias,
      depthwise_initializer=depthwise_initializer,
      pointwise_initializer=pointwise_initializer,
      bias_initializer=bias_initializer,
      depthwise_regularizer=depthwise_regularizer,
      pointwise_regularizer=pointwise_regularizer,
      bias_regularizer=bias_regularizer,
      activity_regularizer=activity_regularizer,
      depthwise_constraint=depthwise_constraint,
      pointwise_constraint=pointwise_constraint,
      bias_constraint=bias_constraint,
      trainable=trainable,
      name=name,
      _reuse=reuse,
      _scope=name)
  return layer.apply(inputs)

Classes

class Conv1D (filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

1D convolution layer (e.g. temporal convolution).

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of a single integer, specifying the length of the 1D convolution window.
strides
An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, length, channels) while channels_first corresponds to inputs with shape (batch, channels, length).
dilation_rate
An integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any strides value != 1.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv1D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv1D(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv1D(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv1D(keras_layers.Conv1D, base.Layer):
  """1D convolution layer (e.g. temporal convolution).

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of a single integer, specifying the
      length of the 1D convolution window.
    strides: An integer or tuple/list of a single integer,
      specifying the stride length of the convolution.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, length, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, length)`.
    dilation_rate: An integer or tuple/list of a single integer, specifying
      the dilation rate to use for dilated convolution.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any `strides` value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.

  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv1D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv1D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv1D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=1,
               padding='valid',
               data_format='channels_last',
               dilation_rate=1,
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv1D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name, **kwargs)

Ancestors

class Convolution1D (filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

1D convolution layer (e.g. temporal convolution).

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of a single integer, specifying the length of the 1D convolution window.
strides
An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, length, channels) while channels_first corresponds to inputs with shape (batch, channels, length).
dilation_rate
An integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any strides value != 1.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv1D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv1D(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv1D(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv1D(keras_layers.Conv1D, base.Layer):
  """1D convolution layer (e.g. temporal convolution).

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of a single integer, specifying the
      length of the 1D convolution window.
    strides: An integer or tuple/list of a single integer,
      specifying the stride length of the convolution.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, length, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, length)`.
    dilation_rate: An integer or tuple/list of a single integer, specifying
      the dilation rate to use for dilated convolution.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any `strides` value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.

  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv1D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv1D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv1D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=1,
               padding='valid',
               data_format='channels_last',
               dilation_rate=1,
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv1D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name, **kwargs)

Ancestors

Inherited members

class Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

2D convolution layer (e.g. spatial convolution over images).

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv2D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv2D(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv2D(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv2D(keras_layers.Conv2D, base.Layer):
  """2D convolution layer (e.g. spatial convolution over images).

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 2 integers, specifying the
      height and width of the 2D convolution window.
      Can be a single integer to specify the same value for
      all spatial dimensions.
    strides: An integer or tuple/list of 2 integers,
      specifying the strides of the convolution along the height and width.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.

    dilation_rate: An integer or tuple/list of 2 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv2D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv2D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format='channels_last',
               dilation_rate=(1, 1),
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv2D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name, **kwargs)

Ancestors

class Convolution2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

2D convolution layer (e.g. spatial convolution over images).

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides
An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv2D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv2D(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv2D(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv2D(keras_layers.Conv2D, base.Layer):
  """2D convolution layer (e.g. spatial convolution over images).

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 2 integers, specifying the
      height and width of the 2D convolution window.
      Can be a single integer to specify the same value for
      all spatial dimensions.
    strides: An integer or tuple/list of 2 integers,
      specifying the strides of the convolution along the height and width.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.

    dilation_rate: An integer or tuple/list of 2 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv2D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv2D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format='channels_last',
               dilation_rate=(1, 1),
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv2D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name, **kwargs)

Ancestors

Inherited members

class Conv2DTranspose (filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

Transposed 2D convolution layer (sometimes called 2D Deconvolution).

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
padding
one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv2DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv2DTranspose(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv2DTranspose(keras_layers.Conv2DTranspose, base.Layer):
  """Transposed 2D convolution layer (sometimes called 2D Deconvolution).

  The need for transposed convolutions generally arises
  from the desire to use a transformation going in the opposite direction
  of a normal convolution, i.e., from something that has the shape of the
  output of some convolution to something that has the shape of its input
  while maintaining a connectivity pattern that is compatible with
  said convolution.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv2DTranspose(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format='channels_last',
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv2DTranspose, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)

Ancestors

class Convolution2DTranspose (filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

Transposed 2D convolution layer (sometimes called 2D Deconvolution).

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
padding
one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv2DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv2DTranspose(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv2DTranspose(keras_layers.Conv2DTranspose, base.Layer):
  """Transposed 2D convolution layer (sometimes called 2D Deconvolution).

  The need for transposed convolutions generally arises
  from the desire to use a transformation going in the opposite direction
  of a normal convolution, i.e., from something that has the shape of the
  output of some convolution to something that has the shape of its input
  while maintaining a connectivity pattern that is compatible with
  said convolution.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv2DTranspose(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format='channels_last',
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv2DTranspose, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)

Ancestors

class Deconvolution2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

Transposed 2D convolution layer (sometimes called 2D Deconvolution).

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
padding
one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv2DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv2DTranspose(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv2DTranspose(keras_layers.Conv2DTranspose, base.Layer):
  """Transposed 2D convolution layer (sometimes called 2D Deconvolution).

  The need for transposed convolutions generally arises
  from the desire to use a transformation going in the opposite direction
  of a normal convolution, i.e., from something that has the shape of the
  output of some convolution to something that has the shape of its input
  while maintaining a connectivity pattern that is compatible with
  said convolution.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv2DTranspose(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format='channels_last',
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv2DTranspose, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)

Ancestors

class Deconv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

Transposed 2D convolution layer (sometimes called 2D Deconvolution).

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions.
padding
one of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv2DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv2DTranspose(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv2DTranspose(keras_layers.Conv2DTranspose, base.Layer):
  """Transposed 2D convolution layer (sometimes called 2D Deconvolution).

  The need for transposed convolutions generally arises
  from the desire to use a transformation going in the opposite direction
  of a normal convolution, i.e., from something that has the shape of the
  output of some convolution to something that has the shape of its input
  while maintaining a connectivity pattern that is compatible with
  said convolution.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 positive integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
    padding: one of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv2DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv2DTranspose(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv2DTranspose(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format='channels_last',
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv2DTranspose, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)

Ancestors

Inherited members

class Conv3D (filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

3D convolution layer (e.g. spatial convolution over volumes).

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides
An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, depth, height, width).
dilation_rate
An integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv3D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv3D(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv3D(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv3D(keras_layers.Conv3D, base.Layer):
  """3D convolution layer (e.g. spatial convolution over volumes).

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 3 integers, specifying the
      depth, height and width of the 3D convolution window.
      Can be a single integer to specify the same value for
      all spatial dimensions.
    strides: An integer or tuple/list of 3 integers,
      specifying the strides of the convolution along the depth,
      height and width.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    dilation_rate: An integer or tuple/list of 3 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv3D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv3D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1, 1),
               padding='valid',
               data_format='channels_last',
               dilation_rate=(1, 1, 1),
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv3D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name, **kwargs)

Ancestors

class Convolution3D (filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

3D convolution layer (e.g. spatial convolution over volumes).

This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If use_bias is True (and a bias_initializer is provided), a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides
An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, depth, height, width).
dilation_rate
An integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv3D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv3D(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv3D(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv3D(keras_layers.Conv3D, base.Layer):
  """3D convolution layer (e.g. spatial convolution over volumes).

  This layer creates a convolution kernel that is convolved
  (actually cross-correlated) with the layer input to produce a tensor of
  outputs. If `use_bias` is True (and a `bias_initializer` is provided),
  a bias vector is created and added to the outputs. Finally, if
  `activation` is not `None`, it is applied to the outputs as well.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 3 integers, specifying the
      depth, height and width of the 3D convolution window.
      Can be a single integer to specify the same value for
      all spatial dimensions.
    strides: An integer or tuple/list of 3 integers,
      specifying the strides of the convolution along the depth,
      height and width.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any stride value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    dilation_rate: An integer or tuple/list of 3 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv3D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv3D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1, 1),
               padding='valid',
               data_format='channels_last',
               dilation_rate=(1, 1, 1),
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv3D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name, **kwargs)

Ancestors

Inherited members

class Conv3DTranspose (filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

Transposed 3D convolution layer (sometimes called 3D Deconvolution).

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides
An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, depth, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv3DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv3DTranspose(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv3DTranspose(keras_layers.Conv3DTranspose, base.Layer):
  """Transposed 3D convolution layer (sometimes called 3D Deconvolution).

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 3 integers, specifying the
      depth, height and width of the 3D convolution window.
      Can be a single integer to specify the same value for all spatial
      dimensions.
    strides: An integer or tuple/list of 3 integers, specifying the strides
      of the convolution along the depth, height and width.
      Can be a single integer to specify the same value for all spatial
      dimensions.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    activation: Activation function. Set it to `None` to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If `None`, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv3DTranspose(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self,
               filters,
               kernel_size,
               strides=(1, 1, 1),
               padding='valid',
               data_format='channels_last',
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv3DTranspose, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)

Ancestors

class Convolution3DTranspose (filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

Transposed 3D convolution layer (sometimes called 3D Deconvolution).

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides
An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, depth, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv3DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv3DTranspose(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv3DTranspose(keras_layers.Conv3DTranspose, base.Layer):
  """Transposed 3D convolution layer (sometimes called 3D Deconvolution).

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 3 integers, specifying the
      depth, height and width of the 3D convolution window.
      Can be a single integer to specify the same value for all spatial
      dimensions.
    strides: An integer or tuple/list of 3 integers, specifying the strides
      of the convolution along the depth, height and width.
      Can be a single integer to specify the same value for all spatial
      dimensions.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    activation: Activation function. Set it to `None` to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If `None`, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv3DTranspose(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self,
               filters,
               kernel_size,
               strides=(1, 1, 1),
               padding='valid',
               data_format='channels_last',
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv3DTranspose, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)

Ancestors

class Deconvolution3D (filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

Transposed 3D convolution layer (sometimes called 3D Deconvolution).

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides
An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, depth, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv3DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv3DTranspose(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv3DTranspose(keras_layers.Conv3DTranspose, base.Layer):
  """Transposed 3D convolution layer (sometimes called 3D Deconvolution).

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 3 integers, specifying the
      depth, height and width of the 3D convolution window.
      Can be a single integer to specify the same value for all spatial
      dimensions.
    strides: An integer or tuple/list of 3 integers, specifying the strides
      of the convolution along the depth, height and width.
      Can be a single integer to specify the same value for all spatial
      dimensions.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    activation: Activation function. Set it to `None` to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If `None`, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv3DTranspose(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self,
               filters,
               kernel_size,
               strides=(1, 1, 1),
               padding='valid',
               data_format='channels_last',
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv3DTranspose, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)

Ancestors

class Deconv3D (filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

Transposed 3D convolution layer (sometimes called 3D Deconvolution).

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
strides
An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, depth, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, depth, height, width).
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the kernel after being updated by an Optimizer (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.Conv3DTranspose.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.Conv3DTranspose(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class Conv3DTranspose(keras_layers.Conv3DTranspose, base.Layer):
  """Transposed 3D convolution layer (sometimes called 3D Deconvolution).

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: An integer or tuple/list of 3 integers, specifying the
      depth, height and width of the 3D convolution window.
      Can be a single integer to specify the same value for all spatial
      dimensions.
    strides: An integer or tuple/list of 3 integers, specifying the strides
      of the convolution along the depth, height and width.
      Can be a single integer to specify the same value for all spatial
      dimensions.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, depth, height, width, channels)` while `channels_first`
      corresponds to inputs with shape
      `(batch, channels, depth, height, width)`.
    activation: Activation function. Set it to `None` to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    kernel_initializer: An initializer for the convolution kernel.
    bias_initializer: An initializer for the bias vector. If `None`, the default
      initializer will be used.
    kernel_regularizer: Optional regularizer for the convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    kernel_constraint: Optional projection function to be applied to the
        kernel after being updated by an `Optimizer` (e.g. used to implement
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.Conv3DTranspose`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.Conv3DTranspose(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self,
               filters,
               kernel_size,
               strides=(1, 1, 1),
               padding='valid',
               data_format='channels_last',
               activation=None,
               use_bias=True,
               kernel_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(Conv3DTranspose, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        activation=activation,
        use_bias=use_bias,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)

Ancestors

Inherited members

class SeparableConv1D (filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer=None, pointwise_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

Depthwise separable 1D convolution.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If use_bias is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A single integer specifying the spatial dimensions of the filters.
strides
A single integer specifying the strides of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, length, channels) while channels_first corresponds to inputs with shape (batch, channels, length).
dilation_rate
A single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to num_filters_in * depth_multiplier.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
depthwise_initializer
An initializer for the depthwise convolution kernel.
pointwise_initializer
An initializer for the pointwise convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an Optimizer (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an Optimizer.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.SeparableConv1D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.SeparableConv1D(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.SeparableConv1D(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class SeparableConv1D(keras_layers.SeparableConv1D, base.Layer):
  """Depthwise separable 1D convolution.

  This layer performs a depthwise convolution that acts separately on
  channels, followed by a pointwise convolution that mixes channels.
  If `use_bias` is True and a bias initializer is provided,
  it adds a bias vector to the output.
  It then optionally applies an activation function to produce the final output.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A single integer specifying the spatial
      dimensions of the filters.
    strides: A single integer specifying the strides
      of the convolution.
      Specifying any `stride` value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, length, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, length)`.
    dilation_rate: A single integer, specifying
      the dilation rate to use for dilated convolution.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    depth_multiplier: The number of depthwise convolution output channels for
      each input channel. The total number of depthwise convolution output
      channels will be equal to `num_filters_in * depth_multiplier`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    depthwise_initializer: An initializer for the depthwise convolution kernel.
    pointwise_initializer: An initializer for the pointwise convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    depthwise_regularizer: Optional regularizer for the depthwise
      convolution kernel.
    pointwise_regularizer: Optional regularizer for the pointwise
      convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    depthwise_constraint: Optional projection function to be applied to the
        depthwise kernel after being updated by an `Optimizer` (e.g. used for
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    pointwise_constraint: Optional projection function to be applied to the
        pointwise kernel after being updated by an `Optimizer`.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.SeparableConv1D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.SeparableConv1D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.SeparableConv1D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=1,
               padding='valid',
               data_format='channels_last',
               dilation_rate=1,
               depth_multiplier=1,
               activation=None,
               use_bias=True,
               depthwise_initializer=None,
               pointwise_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               depthwise_regularizer=None,
               pointwise_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               depthwise_constraint=None,
               pointwise_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(SeparableConv1D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        depth_multiplier=depth_multiplier,
        activation=activation,
        use_bias=use_bias,
        depthwise_initializer=depthwise_initializer,
        pointwise_initializer=pointwise_initializer,
        bias_initializer=bias_initializer,
        depthwise_regularizer=depthwise_regularizer,
        pointwise_regularizer=pointwise_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        depthwise_constraint=depthwise_constraint,
        pointwise_constraint=pointwise_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)

Ancestors

Inherited members

class SeparableConv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer=None, pointwise_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

Depthwise separable 2D convolution.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If use_bias is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 2 integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to num_filters_in * depth_multiplier.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
depthwise_initializer
An initializer for the depthwise convolution kernel.
pointwise_initializer
An initializer for the pointwise convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an Optimizer (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an Optimizer.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.SeparableConv2D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.SeparableConv2D(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.SeparableConv2D(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class SeparableConv2D(keras_layers.SeparableConv2D, base.Layer):
  """Depthwise separable 2D convolution.

  This layer performs a depthwise convolution that acts separately on
  channels, followed by a pointwise convolution that mixes channels.
  If `use_bias` is True and a bias initializer is provided,
  it adds a bias vector to the output.
  It then optionally applies an activation function to produce the final output.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any `stride` value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.

    dilation_rate: An integer or tuple/list of 2 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    depth_multiplier: The number of depthwise convolution output channels for
      each input channel. The total number of depthwise convolution output
      channels will be equal to `num_filters_in * depth_multiplier`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    depthwise_initializer: An initializer for the depthwise convolution kernel.
    pointwise_initializer: An initializer for the pointwise convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    depthwise_regularizer: Optional regularizer for the depthwise
      convolution kernel.
    pointwise_regularizer: Optional regularizer for the pointwise
      convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    depthwise_constraint: Optional projection function to be applied to the
        depthwise kernel after being updated by an `Optimizer` (e.g. used for
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    pointwise_constraint: Optional projection function to be applied to the
        pointwise kernel after being updated by an `Optimizer`.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.SeparableConv2D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.SeparableConv2D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.SeparableConv2D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format='channels_last',
               dilation_rate=(1, 1),
               depth_multiplier=1,
               activation=None,
               use_bias=True,
               depthwise_initializer=None,
               pointwise_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               depthwise_regularizer=None,
               pointwise_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               depthwise_constraint=None,
               pointwise_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(SeparableConv2D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        depth_multiplier=depth_multiplier,
        activation=activation,
        use_bias=use_bias,
        depthwise_initializer=depthwise_initializer,
        pointwise_initializer=pointwise_initializer,
        bias_initializer=bias_initializer,
        depthwise_regularizer=depthwise_regularizer,
        pointwise_regularizer=pointwise_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        depthwise_constraint=depthwise_constraint,
        pointwise_constraint=pointwise_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)

Ancestors

class SeparableConvolution2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer=None, pointwise_initializer=None, bias_initializer=<tensorflow.python.ops.init_ops.Zeros object>, depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs)

Depthwise separable 2D convolution.

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If use_bias is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.

Args

filters
Integer, the dimensionality of the output space (i.e. the number of filters in the convolution).
kernel_size
A tuple or list of 2 integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions.
strides
A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
padding
One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
dilation_rate
An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1.
depth_multiplier
The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to num_filters_in * depth_multiplier.
activation
Activation function. Set it to None to maintain a linear activation.
use_bias
Boolean, whether the layer uses a bias.
depthwise_initializer
An initializer for the depthwise convolution kernel.
pointwise_initializer
An initializer for the pointwise convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default initializer will be used.
depthwise_regularizer
Optional regularizer for the depthwise convolution kernel.
pointwise_regularizer
Optional regularizer for the pointwise convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
depthwise_constraint
Optional projection function to be applied to the depthwise kernel after being updated by an Optimizer (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.
pointwise_constraint
Optional projection function to be applied to the pointwise kernel after being updated by an Optimizer.
bias_constraint
Optional projection function to be applied to the bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
name
A string, the name of the layer.

@compatibility(TF2) This API is not compatible with eager execution or tf.function.

Please refer to [tf.layers section of the migration guide] (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers) to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2 layer is tf.keras.layers.SeparableConv2D.

Structural Mapping to Native TF2

None of the supported arguments have changed name.

Before:

 conv = tf.compat.v1.layers.SeparableConv2D(filters=3, kernel_size=3)

After:

 conv = tf.keras.layers.SeparableConv2D(filters=3, kernels_size=3)

@end_compatibility

Expand source code
class SeparableConv2D(keras_layers.SeparableConv2D, base.Layer):
  """Depthwise separable 2D convolution.

  This layer performs a depthwise convolution that acts separately on
  channels, followed by a pointwise convolution that mixes channels.
  If `use_bias` is True and a bias initializer is provided,
  it adds a bias vector to the output.
  It then optionally applies an activation function to produce the final output.

  Args:
    filters: Integer, the dimensionality of the output space (i.e. the number
      of filters in the convolution).
    kernel_size: A tuple or list of 2 integers specifying the spatial
      dimensions of the filters. Can be a single integer to specify the same
      value for all spatial dimensions.
    strides: A tuple or list of 2 positive integers specifying the strides
      of the convolution. Can be a single integer to specify the same value for
      all spatial dimensions.
      Specifying any `stride` value != 1 is incompatible with specifying
      any `dilation_rate` value != 1.
    padding: One of `"valid"` or `"same"` (case-insensitive).
      `"valid"` means no padding. `"same"` results in padding evenly to
      the left/right or up/down of the input such that output has the same
      height/width dimension as the input.
    data_format: A string, one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, height, width, channels)` while `channels_first` corresponds to
      inputs with shape `(batch, channels, height, width)`.

    dilation_rate: An integer or tuple/list of 2 integers, specifying
      the dilation rate to use for dilated convolution.
      Can be a single integer to specify the same value for
      all spatial dimensions.
      Currently, specifying any `dilation_rate` value != 1 is
      incompatible with specifying any stride value != 1.
    depth_multiplier: The number of depthwise convolution output channels for
      each input channel. The total number of depthwise convolution output
      channels will be equal to `num_filters_in * depth_multiplier`.
    activation: Activation function. Set it to None to maintain a
      linear activation.
    use_bias: Boolean, whether the layer uses a bias.
    depthwise_initializer: An initializer for the depthwise convolution kernel.
    pointwise_initializer: An initializer for the pointwise convolution kernel.
    bias_initializer: An initializer for the bias vector. If None, the default
      initializer will be used.
    depthwise_regularizer: Optional regularizer for the depthwise
      convolution kernel.
    pointwise_regularizer: Optional regularizer for the pointwise
      convolution kernel.
    bias_regularizer: Optional regularizer for the bias vector.
    activity_regularizer: Optional regularizer function for the output.
    depthwise_constraint: Optional projection function to be applied to the
        depthwise kernel after being updated by an `Optimizer` (e.g. used for
        norm constraints or value constraints for layer weights). The function
        must take as input the unprojected variable and must return the
        projected variable (which must have the same shape). Constraints are
        not safe to use when doing asynchronous distributed training.
    pointwise_constraint: Optional projection function to be applied to the
        pointwise kernel after being updated by an `Optimizer`.
    bias_constraint: Optional projection function to be applied to the
        bias after being updated by an `Optimizer`.
    trainable: Boolean, if `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
    name: A string, the name of the layer.


  @compatibility(TF2)
  This API is not compatible with eager execution or `tf.function`.

  Please refer to [tf.layers section of the migration guide]
  (https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)
  to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
  layer is `tf.keras.layers.SeparableConv2D`.


  #### Structural Mapping to Native TF2

  None of the supported arguments have changed name.

  Before:

  ```python
   conv = tf.compat.v1.layers.SeparableConv2D(filters=3, kernel_size=3)
  ```

  After:

  ```python
   conv = tf.keras.layers.SeparableConv2D(filters=3, kernels_size=3)
  ```
  @end_compatibility
  """

  def __init__(self, filters,
               kernel_size,
               strides=(1, 1),
               padding='valid',
               data_format='channels_last',
               dilation_rate=(1, 1),
               depth_multiplier=1,
               activation=None,
               use_bias=True,
               depthwise_initializer=None,
               pointwise_initializer=None,
               bias_initializer=tf.compat.v1.zeros_initializer(),
               depthwise_regularizer=None,
               pointwise_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               depthwise_constraint=None,
               pointwise_constraint=None,
               bias_constraint=None,
               trainable=True,
               name=None,
               **kwargs):
    super(SeparableConv2D, self).__init__(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_format=data_format,
        dilation_rate=dilation_rate,
        depth_multiplier=depth_multiplier,
        activation=activation,
        use_bias=use_bias,
        depthwise_initializer=depthwise_initializer,
        pointwise_initializer=pointwise_initializer,
        bias_initializer=bias_initializer,
        depthwise_regularizer=depthwise_regularizer,
        pointwise_regularizer=pointwise_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        depthwise_constraint=depthwise_constraint,
        pointwise_constraint=pointwise_constraint,
        bias_constraint=bias_constraint,
        trainable=trainable,
        name=name,
        **kwargs)

Ancestors

Inherited members