Module keras.api.keras.applications.vgg19
Public API for tf.keras.applications.vgg19 namespace.
Expand source code
# This file is MACHINE GENERATED! Do not edit.
# Generated by: tensorflow/python/tools/api/generator/create_python_api.py script.
"""Public API for tf.keras.applications.vgg19 namespace.
"""
from __future__ import print_function as _print_function
import sys as _sys
from keras.applications.vgg19 import VGG19
from keras.applications.vgg19 import decode_predictions
from keras.applications.vgg19 import preprocess_input
del _print_function
from tensorflow.python.util import module_wrapper as _module_wrapper
if not isinstance(_sys.modules[__name__], _module_wrapper.TFModuleWrapper):
_sys.modules[__name__] = _module_wrapper.TFModuleWrapper(
_sys.modules[__name__], "keras.applications.vgg19", public_apis=None, deprecation=True,
has_lite=False)
Functions
def VGG19(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation='softmax')
-
Instantiates the VGG19 architecture.
Reference: - Very Deep Convolutional Networks for Large-Scale Image Recognition (ICLR 2015)
For image classification use cases, see this page for detailed examples.
For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.
The default input size for this model is 224x224.
Note: each Keras Application expects a specific kind of input preprocessing. For VGG19, call
tf.keras.applications.vgg19.preprocess_input
on your inputs before passing them to the model.vgg19.preprocess_input
will convert the input images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling.Args
include_top
- whether to include the 3 fully-connected layers at the top of the network.
weights
- one of
None
(random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor
- optional Keras tensor
(i.e. output of
layers.Input()
) to use as image input for the model. input_shape
- optional shape tuple, only to be specified
if
include_top
is False (otherwise the input shape has to be(224, 224, 3)
(withchannels_last
data format) or(3, 224, 224)
(withchannels_first
data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g.(200, 200, 3)
would be one valid value. pooling
- Optional pooling mode for feature extraction
when
include_top
isFalse
. -None
means that the output of the model will be the 4D tensor output of the last convolutional block. -avg
means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. -max
means that global max pooling will be applied. classes
- optional number of classes to classify images
into, only to be specified if
include_top
is True, and if noweights
argument is specified. classifier_activation
- A
str
or callable. The activation function to use on the "top" layer. Ignored unlessinclude_top=True
. Setclassifier_activation=None
to return the logits of the "top" layer. When loading pretrained weights,classifier_activation
can only beNone
or"softmax"
.
Returns
A
keras.Model
instance.Expand source code
@keras_export('keras.applications.vgg19.VGG19', 'keras.applications.VGG19') def VGG19( include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation='softmax'): """Instantiates the VGG19 architecture. Reference: - [Very Deep Convolutional Networks for Large-Scale Image Recognition]( https://arxiv.org/abs/1409.1556) (ICLR 2015) For image classification use cases, see [this page for detailed examples]( https://keras.io/api/applications/#usage-examples-for-image-classification-models). For transfer learning use cases, make sure to read the [guide to transfer learning & fine-tuning]( https://keras.io/guides/transfer_learning/). The default input size for this model is 224x224. Note: each Keras Application expects a specific kind of input preprocessing. For VGG19, call `tf.keras.applications.vgg19.preprocess_input` on your inputs before passing them to the model. `vgg19.preprocess_input` will convert the input images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. Args: include_top: whether to include the 3 fully-connected layers at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. Returns: A `keras.Model` instance. """ if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as `"imagenet"` with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=224, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor # Block 1 x = layers.Conv2D( 64, (3, 3), activation='relu', padding='same', name='block1_conv1')( img_input) x = layers.Conv2D( 64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) # Block 2 x = layers.Conv2D( 128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) x = layers.Conv2D( 128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) # Block 3 x = layers.Conv2D( 256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x) x = layers.Conv2D( 256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x) x = layers.Conv2D( 256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x) x = layers.Conv2D( 256, (3, 3), activation='relu', padding='same', name='block3_conv4')(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) # Block 4 x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x) x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x) x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x) x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block4_conv4')(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) # Block 5 x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x) x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x) x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x) x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block5_conv4')(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) if include_top: # Classification block x = layers.Flatten(name='flatten')(x) x = layers.Dense(4096, activation='relu', name='fc1')(x) x = layers.Dense(4096, activation='relu', name='fc2')(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense(classes, activation=classifier_activation, name='predictions')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D()(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = training.Model(inputs, x, name='vgg19') # Load weights. if weights == 'imagenet': if include_top: weights_path = data_utils.get_file( 'vgg19_weights_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH, cache_subdir='models', file_hash='cbe5617147190e668d6c5d5026f83318') else: weights_path = data_utils.get_file( 'vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models', file_hash='253f8cb515780f3b799900260a226db6') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model
def decode_predictions(preds, top=5)
-
Decodes the prediction of an ImageNet model.
Args
preds
- Numpy array encoding a batch of predictions.
top
- Integer, how many top-guesses to return. Defaults to 5.
Returns
A list of lists of top class prediction tuples
(class_name, class_description, score)
. One list of tuples per sample in batch input.Raises
ValueError
- In case of invalid shape of the
pred
array (must be 2D).
Expand source code
@keras_export('keras.applications.vgg19.decode_predictions') def decode_predictions(preds, top=5): return imagenet_utils.decode_predictions(preds, top=top)
def preprocess_input(x, data_format=None)
-
Preprocesses a tensor or Numpy array encoding a batch of images.
Usage example with
applications.MobileNet
:i = tf.keras.layers.Input([None, None, 3], dtype = tf.uint8) x = tf.cast(i, tf.float32) x = tf.keras.applications.mobilenet.preprocess_input(x) core = tf.keras.applications.MobileNet() x = core(x) model = tf.keras.Model(inputs=[i], outputs=[x]) image = tf.image.decode_png(tf.io.read_file('file.png')) result = model(image)
Args
x
- A floating point
numpy.array
or atf.Tensor
, 3D or 4D with 3 color channels, with values in the range [0, 255]. The preprocessed data are written over the input data if the data types are compatible. To avoid this behaviour,numpy.copy(x)
can be used. data_format
- Optional data format of the image tensor/array. Defaults to
None, in which case the global setting
tf.keras.backend.image_data_format()
is used (unless you changed it, it defaults to "channels_last").
Returns
Preprocessed
numpy.array
or atf.Tensor
with typefloat32
.The images are converted from RGB to BGR, then each color channel is zero-centered with respect to the ImageNet dataset, without scaling.
Raises
ValueError
- In case of unknown
data_format
argument.
Expand source code
@keras_export('keras.applications.vgg19.preprocess_input') def preprocess_input(x, data_format=None): return imagenet_utils.preprocess_input( x, data_format=data_format, mode='caffe')