Module keras.api.keras.applications.densenet

Public API for tf.keras.applications.densenet namespace.

Expand source code
# This file is MACHINE GENERATED! Do not edit.
# Generated by: tensorflow/python/tools/api/generator/create_python_api.py script.
"""Public API for tf.keras.applications.densenet namespace.
"""

from __future__ import print_function as _print_function

import sys as _sys

from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
from keras.applications.densenet import decode_predictions
from keras.applications.densenet import preprocess_input

del _print_function

from tensorflow.python.util import module_wrapper as _module_wrapper

if not isinstance(_sys.modules[__name__], _module_wrapper.TFModuleWrapper):
  _sys.modules[__name__] = _module_wrapper.TFModuleWrapper(
      _sys.modules[__name__], "keras.applications.densenet", public_apis=None, deprecation=True,
      has_lite=False)

Functions

def DenseNet121(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000)

Instantiates the Densenet121 architecture.

Reference: - Densely Connected Convolutional Networks (CVPR 2017)

Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at ~/.keras/keras.json.

Note: each Keras Application expects a specific kind of input preprocessing. For DenseNet, call tf.keras.applications.densenet.preprocess_input on your inputs before passing them to the model.

Args

include_top
whether to include the fully-connected layer at the top of the network.
weights
one of None (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded.
input_tensor
optional Keras tensor (i.e. output of layers.Input()) to use as image input for the model.
input_shape
optional shape tuple, only to be specified if include_top is False (otherwise the input shape has to be (224, 224, 3) (with 'channels_last' data format) or (3, 224, 224) (with 'channels_first' data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. (200, 200, 3) would be one valid value.
pooling
Optional pooling mode for feature extraction when include_top is False. - None means that the output of the model will be the 4D tensor output of the last convolutional block. - avg means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - max means that global max pooling will be applied.
classes
optional number of classes to classify images into, only to be specified if include_top is True, and if no weights argument is specified.

Returns

A Keras model instance.

Expand source code
@keras_export('keras.applications.densenet.DenseNet121',
              'keras.applications.DenseNet121')
def DenseNet121(include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000):
  """Instantiates the Densenet121 architecture."""
  return DenseNet([6, 12, 24, 16], include_top, weights, input_tensor,
                  input_shape, pooling, classes)
def DenseNet169(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000)

Instantiates the Densenet169 architecture.

Reference: - Densely Connected Convolutional Networks (CVPR 2017)

Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at ~/.keras/keras.json.

Note: each Keras Application expects a specific kind of input preprocessing. For DenseNet, call tf.keras.applications.densenet.preprocess_input on your inputs before passing them to the model.

Args

include_top
whether to include the fully-connected layer at the top of the network.
weights
one of None (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded.
input_tensor
optional Keras tensor (i.e. output of layers.Input()) to use as image input for the model.
input_shape
optional shape tuple, only to be specified if include_top is False (otherwise the input shape has to be (224, 224, 3) (with 'channels_last' data format) or (3, 224, 224) (with 'channels_first' data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. (200, 200, 3) would be one valid value.
pooling
Optional pooling mode for feature extraction when include_top is False. - None means that the output of the model will be the 4D tensor output of the last convolutional block. - avg means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - max means that global max pooling will be applied.
classes
optional number of classes to classify images into, only to be specified if include_top is True, and if no weights argument is specified.

Returns

A Keras model instance.

Expand source code
@keras_export('keras.applications.densenet.DenseNet169',
              'keras.applications.DenseNet169')
def DenseNet169(include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000):
  """Instantiates the Densenet169 architecture."""
  return DenseNet([6, 12, 32, 32], include_top, weights, input_tensor,
                  input_shape, pooling, classes)
def DenseNet201(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000)

Instantiates the Densenet201 architecture.

Reference: - Densely Connected Convolutional Networks (CVPR 2017)

Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at ~/.keras/keras.json.

Note: each Keras Application expects a specific kind of input preprocessing. For DenseNet, call tf.keras.applications.densenet.preprocess_input on your inputs before passing them to the model.

Args

include_top
whether to include the fully-connected layer at the top of the network.
weights
one of None (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded.
input_tensor
optional Keras tensor (i.e. output of layers.Input()) to use as image input for the model.
input_shape
optional shape tuple, only to be specified if include_top is False (otherwise the input shape has to be (224, 224, 3) (with 'channels_last' data format) or (3, 224, 224) (with 'channels_first' data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. (200, 200, 3) would be one valid value.
pooling
Optional pooling mode for feature extraction when include_top is False. - None means that the output of the model will be the 4D tensor output of the last convolutional block. - avg means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - max means that global max pooling will be applied.
classes
optional number of classes to classify images into, only to be specified if include_top is True, and if no weights argument is specified.

Returns

A Keras model instance.

Expand source code
@keras_export('keras.applications.densenet.DenseNet201',
              'keras.applications.DenseNet201')
def DenseNet201(include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000):
  """Instantiates the Densenet201 architecture."""
  return DenseNet([6, 12, 48, 32], include_top, weights, input_tensor,
                  input_shape, pooling, classes)
def decode_predictions(preds, top=5)

Decodes the prediction of an ImageNet model.

Args

preds
Numpy array encoding a batch of predictions.
top
Integer, how many top-guesses to return. Defaults to 5.

Returns

A list of lists of top class prediction tuples (class_name, class_description, score). One list of tuples per sample in batch input.

Raises

ValueError
In case of invalid shape of the pred array (must be 2D).
Expand source code
@keras_export('keras.applications.densenet.decode_predictions')
def decode_predictions(preds, top=5):
  return imagenet_utils.decode_predictions(preds, top=top)
def preprocess_input(x, data_format=None)

Preprocesses a tensor or Numpy array encoding a batch of images.

Usage example with applications.MobileNet:

i = tf.keras.layers.Input([None, None, 3], dtype = tf.uint8)
x = tf.cast(i, tf.float32)
x = tf.keras.applications.mobilenet.preprocess_input(x)
core = tf.keras.applications.MobileNet()
x = core(x)
model = tf.keras.Model(inputs=[i], outputs=[x])

image = tf.image.decode_png(tf.io.read_file('file.png'))
result = model(image)

Args

x
A floating point numpy.array or a tf.Tensor, 3D or 4D with 3 color channels, with values in the range [0, 255]. The preprocessed data are written over the input data if the data types are compatible. To avoid this behaviour, numpy.copy(x) can be used.
data_format
Optional data format of the image tensor/array. Defaults to None, in which case the global setting tf.keras.backend.image_data_format() is used (unless you changed it, it defaults to "channels_last").

Returns

Preprocessed numpy.array or a tf.Tensor with type float32.

The input pixels values are scaled between 0 and 1 and each channel is normalized with respect to the ImageNet dataset.

Raises

ValueError
In case of unknown data_format argument.
Expand source code
@keras_export('keras.applications.densenet.preprocess_input')
def preprocess_input(x, data_format=None):
  return imagenet_utils.preprocess_input(
      x, data_format=data_format, mode='torch')