Module keras.layers.normalization.layer_normalization

Layer Normalization layer.

Expand source code
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Layer Normalization layer."""

import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes

from keras import constraints
from keras import initializers
from keras import regularizers
from keras.engine.base_layer import Layer

from tensorflow.python.util.tf_export import keras_export


@keras_export('keras.layers.LayerNormalization')
class LayerNormalization(Layer):
  """Layer normalization layer (Ba et al., 2016).

  Normalize the activations of the previous layer for each given example in a
  batch independently, rather than across a batch like Batch Normalization.
  i.e. applies a transformation that maintains the mean activation within each
  example close to 0 and the activation standard deviation close to 1.

  Given a tensor `inputs`, moments are calculated and normalization
  is performed across the axes specified in `axis`.

  Example:

  >>> data = tf.constant(np.arange(10).reshape(5, 2) * 10, dtype=tf.float32)
  >>> print(data)
  tf.Tensor(
  [[ 0. 10.]
   [20. 30.]
   [40. 50.]
   [60. 70.]
   [80. 90.]], shape=(5, 2), dtype=float32)

  >>> layer = tf.keras.layers.LayerNormalization(axis=1)
  >>> output = layer(data)
  >>> print(output)
  tf.Tensor(
  [[-1. 1.]
   [-1. 1.]
   [-1. 1.]
   [-1. 1.]
   [-1. 1.]], shape=(5, 2), dtype=float32)

  Notice that with Layer Normalization the normalization happens across the
  axes *within* each example, rather than across different examples in the
  batch.

  If `scale` or `center` are enabled, the layer will scale the normalized
  outputs by broadcasting them with a trainable variable `gamma`, and center
  the outputs by broadcasting with a trainable variable `beta`. `gamma` will
  default to a ones tensor and `beta` will default to a zeros tensor, so that
  centering and scaling are no-ops before training has begun.

  So, with scaling and centering enabled the normalization equations
  are as follows:

  Let the intermediate activations for a mini-batch to be the `inputs`.

  For each sample `x_i` in `inputs` with `k` features, we compute the mean and
  variance of the sample:

  ```python
  mean_i = sum(x_i[j] for j in range(k)) / k
  var_i = sum((x_i[j] - mean_i) ** 2 for j in range(k)) / k
  ```

  and then compute a normalized `x_i_normalized`, including a small factor
  `epsilon` for numerical stability.

  ```python
  x_i_normalized = (x_i - mean_i) / sqrt(var_i + epsilon)
  ```

  And finally `x_i_normalized ` is linearly transformed by `gamma` and `beta`,
  which are learned parameters:

  ```python
  output_i = x_i_normalized * gamma + beta
  ```

  `gamma` and `beta` will span the axes of `inputs` specified in `axis`, and
  this part of the inputs' shape must be fully defined.

  For example:

  >>> layer = tf.keras.layers.LayerNormalization(axis=[1, 2, 3])
  >>> layer.build([5, 20, 30, 40])
  >>> print(layer.beta.shape)
  (20, 30, 40)
  >>> print(layer.gamma.shape)
  (20, 30, 40)

  Note that other implementations of layer normalization may choose to define
  `gamma` and `beta` over a separate set of axes from the axes being
  normalized across. For example, Group Normalization
  ([Wu et al. 2018](https://arxiv.org/abs/1803.08494)) with group size of 1
  corresponds to a Layer Normalization that normalizes across height, width,
  and channel and has `gamma` and `beta` span only the channel dimension.
  So, this Layer Normalization implementation will not match a Group
  Normalization layer with group size set to 1.

  Args:
    axis: Integer or List/Tuple. The axis or axes to normalize across. Typically
      this is the features axis/axes. The left-out axes are typically the batch
      axis/axes. This argument defaults to `-1`, the last dimension in the
      input.
    epsilon: Small float added to variance to avoid dividing by zero. Defaults
      to 1e-3
    center: If True, add offset of `beta` to normalized tensor. If False, `beta`
      is ignored. Defaults to True.
    scale: If True, multiply by `gamma`. If False, `gamma` is not used. Defaults
      to True. When the next layer is linear (also e.g. `nn.relu`), this can be
      disabled since the scaling will be done by the next layer.
    beta_initializer: Initializer for the beta weight. Defaults to zeros.
    gamma_initializer: Initializer for the gamma weight. Defaults to ones.
    beta_regularizer: Optional regularizer for the beta weight. None by default.
    gamma_regularizer: Optional regularizer for the gamma weight. None by
      default.
    beta_constraint: Optional constraint for the beta weight. None by default.
    gamma_constraint: Optional constraint for the gamma weight. None by default.

  Input shape:
    Arbitrary. Use the keyword argument `input_shape` (tuple of
    integers, does not include the samples axis) when using this layer as the
    first layer in a model.

  Output shape:
    Same shape as input.

  Reference:
    - [Lei Ba et al., 2016](https://arxiv.org/abs/1607.06450).
  """

  def __init__(self,
               axis=-1,
               epsilon=1e-3,
               center=True,
               scale=True,
               beta_initializer='zeros',
               gamma_initializer='ones',
               beta_regularizer=None,
               gamma_regularizer=None,
               beta_constraint=None,
               gamma_constraint=None,
               **kwargs):
    super(LayerNormalization, self).__init__(**kwargs)
    if isinstance(axis, (list, tuple)):
      self.axis = axis[:]
    elif isinstance(axis, int):
      self.axis = axis
    else:
      raise TypeError('Expected an int or a list/tuple of ints for the '
                      'argument \'axis\', but received: %r' % axis)

    self.epsilon = epsilon
    self.center = center
    self.scale = scale
    self.beta_initializer = initializers.get(beta_initializer)
    self.gamma_initializer = initializers.get(gamma_initializer)
    self.beta_regularizer = regularizers.get(beta_regularizer)
    self.gamma_regularizer = regularizers.get(gamma_regularizer)
    self.beta_constraint = constraints.get(beta_constraint)
    self.gamma_constraint = constraints.get(gamma_constraint)

    self.supports_masking = True

    # Indicates whether a faster fused implementation can be used. This will be
    # set to True or False in build()"
    self._fused = None

  def _fused_can_be_used(self, ndims):
    """Returns false if fused implementation cannot be used.

    Check if the axis is contiguous and can be collapsed into the last axis.
    The self.axis is assumed to have no duplicates.
    """
    axis = sorted(self.axis)
    can_use_fused = False

    if axis[-1] == ndims - 1 and axis[-1] - axis[0] == len(axis) - 1:
      can_use_fused = True

    # fused_batch_norm will silently raise epsilon to be at least 1.001e-5, so
    # we cannot used the fused version if epsilon is below that value. Also, the
    # variable dtype must be float32, as fused_batch_norm only supports float32
    # variables.
    if self.epsilon < 1.001e-5 or self.dtype != 'float32':
      can_use_fused = False

    return can_use_fused

  def build(self, input_shape):
    ndims = len(input_shape)
    if ndims is None:
      raise ValueError('Input shape %s has undefined rank.' % input_shape)

    # Convert axis to list and resolve negatives
    if isinstance(self.axis, int):
      self.axis = [self.axis]
    elif isinstance(self.axis, tuple):
      self.axis = list(self.axis)
    for idx, x in enumerate(self.axis):
      if x < 0:
        self.axis[idx] = ndims + x

    # Validate axes
    for x in self.axis:
      if x < 0 or x >= ndims:
        raise ValueError('Invalid axis: %d' % x)
    if len(self.axis) != len(set(self.axis)):
      raise ValueError('Duplicate axis: {}'.format(tuple(self.axis)))

    param_shape = [input_shape[dim] for dim in self.axis]
    if self.scale:
      self.gamma = self.add_weight(
          name='gamma',
          shape=param_shape,
          initializer=self.gamma_initializer,
          regularizer=self.gamma_regularizer,
          constraint=self.gamma_constraint,
          trainable=True,
          experimental_autocast=False)
    else:
      self.gamma = None

    if self.center:
      self.beta = self.add_weight(
          name='beta',
          shape=param_shape,
          initializer=self.beta_initializer,
          regularizer=self.beta_regularizer,
          constraint=self.beta_constraint,
          trainable=True,
          experimental_autocast=False)
    else:
      self.beta = None

    self._fused = self._fused_can_be_used(ndims)

    self.built = True

  def call(self, inputs):
    # Compute the axes along which to reduce the mean / variance
    input_shape = inputs.shape
    ndims = len(input_shape)

    # Broadcasting only necessary for norm when the axis is not just
    # the last dimension
    broadcast_shape = [1] * ndims
    for dim in self.axis:
      broadcast_shape[dim] = input_shape.dims[dim].value

    def _broadcast(v):
      if (v is not None and len(v.shape) != ndims and self.axis != [ndims - 1]):
        return tf.reshape(v, broadcast_shape)
      return v

    if not self._fused:
      input_dtype = inputs.dtype
      if input_dtype in ('float16', 'bfloat16') and self.dtype == 'float32':
        # If mixed precision is used, cast inputs to float32 so that this is at
        # least as numerically stable as the fused version.
        inputs = tf.cast(inputs, 'float32')

      # Calculate the moments on the last axis (layer activations).
      mean, variance = tf.nn.moments(inputs, self.axis, keepdims=True)

      scale, offset = _broadcast(self.gamma), _broadcast(self.beta)

      # Compute layer normalization using the batch_normalization function.
      outputs = tf.nn.batch_normalization(
          inputs,
          mean,
          variance,
          offset=offset,
          scale=scale,
          variance_epsilon=self.epsilon)
      outputs = tf.cast(outputs, input_dtype)
    else:
      # Collapse dims before self.axis, and dims in self.axis
      pre_dim, in_dim = (1, 1)
      axis = sorted(self.axis)
      tensor_shape = tf.shape(inputs)
      for dim in range(0, ndims):
        dim_tensor = tensor_shape[dim]
        if dim < axis[0]:
          pre_dim = pre_dim * dim_tensor
        else:
          assert dim in axis
          in_dim = in_dim * dim_tensor

      squeezed_shape = [1, pre_dim, in_dim, 1]
      # This fused operation requires reshaped inputs to be NCHW.
      data_format = 'NCHW'

      inputs = tf.reshape(inputs, squeezed_shape)

      # self.gamma and self.beta have the wrong shape for fused_batch_norm, so
      # we cannot pass them as the scale and offset parameters. Therefore, we
      # create two constant tensors in correct shapes for fused_batch_norm and
      # later construct a separate calculation on the scale and offset.
      scale = tf.ones([pre_dim], dtype=self.dtype)
      offset = tf.zeros([pre_dim], dtype=self.dtype)

      # Compute layer normalization using the fused_batch_norm function.
      outputs, _, _ = tf.compat.v1.nn.fused_batch_norm(
          inputs,
          scale=scale,
          offset=offset,
          epsilon=self.epsilon,
          data_format=data_format)

      outputs = tf.reshape(outputs, tensor_shape)

      scale, offset = _broadcast(self.gamma), _broadcast(self.beta)

      if scale is not None:
        outputs = outputs * tf.cast(scale, outputs.dtype)
      if offset is not None:
        outputs = outputs + tf.cast(offset, outputs.dtype)

    # If some components of the shape got lost due to adjustments, fix that.
    outputs.set_shape(input_shape)

    return outputs

  def compute_output_shape(self, input_shape):
    return input_shape

  def get_config(self):
    config = {
        'axis': self.axis,
        'epsilon': self.epsilon,
        'center': self.center,
        'scale': self.scale,
        'beta_initializer': initializers.serialize(self.beta_initializer),
        'gamma_initializer': initializers.serialize(self.gamma_initializer),
        'beta_regularizer': regularizers.serialize(self.beta_regularizer),
        'gamma_regularizer': regularizers.serialize(self.gamma_regularizer),
        'beta_constraint': constraints.serialize(self.beta_constraint),
        'gamma_constraint': constraints.serialize(self.gamma_constraint)
    }
    base_config = super(LayerNormalization, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

Classes

class LayerNormalization (axis=-1, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, **kwargs)

Layer normalization layer (Ba et al., 2016).

Normalize the activations of the previous layer for each given example in a batch independently, rather than across a batch like Batch Normalization. i.e. applies a transformation that maintains the mean activation within each example close to 0 and the activation standard deviation close to 1.

Given a tensor inputs, moments are calculated and normalization is performed across the axes specified in axis.

Example:

>>> data = tf.constant(np.arange(10).reshape(5, 2) * 10, dtype=tf.float32)
>>> print(data)
tf.Tensor(
[[ 0. 10.]
 [20. 30.]
 [40. 50.]
 [60. 70.]
 [80. 90.]], shape=(5, 2), dtype=float32)
>>> layer = tf.keras.layers.LayerNormalization(axis=1)
>>> output = layer(data)
>>> print(output)
tf.Tensor(
[[-1. 1.]
 [-1. 1.]
 [-1. 1.]
 [-1. 1.]
 [-1. 1.]], shape=(5, 2), dtype=float32)

Notice that with Layer Normalization the normalization happens across the axes within each example, rather than across different examples in the batch.

If scale or center are enabled, the layer will scale the normalized outputs by broadcasting them with a trainable variable gamma, and center the outputs by broadcasting with a trainable variable beta. gamma will default to a ones tensor and beta will default to a zeros tensor, so that centering and scaling are no-ops before training has begun.

So, with scaling and centering enabled the normalization equations are as follows:

Let the intermediate activations for a mini-batch to be the inputs.

For each sample x_i in inputs with k features, we compute the mean and variance of the sample:

mean_i = sum(x_i[j] for j in range(k)) / k
var_i = sum((x_i[j] - mean_i) ** 2 for j in range(k)) / k

and then compute a normalized x_i_normalized, including a small factor epsilon for numerical stability.

x_i_normalized = (x_i - mean_i) / sqrt(var_i + epsilon)

And finally x_i_normalized is linearly transformed by gamma and beta, which are learned parameters:

output_i = x_i_normalized * gamma + beta

gamma and beta will span the axes of inputs specified in axis, and this part of the inputs' shape must be fully defined.

For example:

>>> layer = tf.keras.layers.LayerNormalization(axis=[1, 2, 3])
>>> layer.build([5, 20, 30, 40])
>>> print(layer.beta.shape)
(20, 30, 40)
>>> print(layer.gamma.shape)
(20, 30, 40)

Note that other implementations of layer normalization may choose to define gamma and beta over a separate set of axes from the axes being normalized across. For example, Group Normalization (Wu et al. 2018) with group size of 1 corresponds to a Layer Normalization that normalizes across height, width, and channel and has gamma and beta span only the channel dimension. So, this Layer Normalization implementation will not match a Group Normalization layer with group size set to 1.

Args

axis
Integer or List/Tuple. The axis or axes to normalize across. Typically this is the features axis/axes. The left-out axes are typically the batch axis/axes. This argument defaults to -1, the last dimension in the input.
epsilon
Small float added to variance to avoid dividing by zero. Defaults to 1e-3
center
If True, add offset of beta to normalized tensor. If False, beta is ignored. Defaults to True.
scale
If True, multiply by gamma. If False, gamma is not used. Defaults to True. When the next layer is linear (also e.g. nn.relu), this can be disabled since the scaling will be done by the next layer.
beta_initializer
Initializer for the beta weight. Defaults to zeros.
gamma_initializer
Initializer for the gamma weight. Defaults to ones.
beta_regularizer
Optional regularizer for the beta weight. None by default.
gamma_regularizer
Optional regularizer for the gamma weight. None by default.
beta_constraint
Optional constraint for the beta weight. None by default.
gamma_constraint
Optional constraint for the gamma weight. None by default.

Input shape: Arbitrary. Use the keyword argument input_shape (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model.

Output shape: Same shape as input.

Reference

Expand source code
class LayerNormalization(Layer):
  """Layer normalization layer (Ba et al., 2016).

  Normalize the activations of the previous layer for each given example in a
  batch independently, rather than across a batch like Batch Normalization.
  i.e. applies a transformation that maintains the mean activation within each
  example close to 0 and the activation standard deviation close to 1.

  Given a tensor `inputs`, moments are calculated and normalization
  is performed across the axes specified in `axis`.

  Example:

  >>> data = tf.constant(np.arange(10).reshape(5, 2) * 10, dtype=tf.float32)
  >>> print(data)
  tf.Tensor(
  [[ 0. 10.]
   [20. 30.]
   [40. 50.]
   [60. 70.]
   [80. 90.]], shape=(5, 2), dtype=float32)

  >>> layer = tf.keras.layers.LayerNormalization(axis=1)
  >>> output = layer(data)
  >>> print(output)
  tf.Tensor(
  [[-1. 1.]
   [-1. 1.]
   [-1. 1.]
   [-1. 1.]
   [-1. 1.]], shape=(5, 2), dtype=float32)

  Notice that with Layer Normalization the normalization happens across the
  axes *within* each example, rather than across different examples in the
  batch.

  If `scale` or `center` are enabled, the layer will scale the normalized
  outputs by broadcasting them with a trainable variable `gamma`, and center
  the outputs by broadcasting with a trainable variable `beta`. `gamma` will
  default to a ones tensor and `beta` will default to a zeros tensor, so that
  centering and scaling are no-ops before training has begun.

  So, with scaling and centering enabled the normalization equations
  are as follows:

  Let the intermediate activations for a mini-batch to be the `inputs`.

  For each sample `x_i` in `inputs` with `k` features, we compute the mean and
  variance of the sample:

  ```python
  mean_i = sum(x_i[j] for j in range(k)) / k
  var_i = sum((x_i[j] - mean_i) ** 2 for j in range(k)) / k
  ```

  and then compute a normalized `x_i_normalized`, including a small factor
  `epsilon` for numerical stability.

  ```python
  x_i_normalized = (x_i - mean_i) / sqrt(var_i + epsilon)
  ```

  And finally `x_i_normalized ` is linearly transformed by `gamma` and `beta`,
  which are learned parameters:

  ```python
  output_i = x_i_normalized * gamma + beta
  ```

  `gamma` and `beta` will span the axes of `inputs` specified in `axis`, and
  this part of the inputs' shape must be fully defined.

  For example:

  >>> layer = tf.keras.layers.LayerNormalization(axis=[1, 2, 3])
  >>> layer.build([5, 20, 30, 40])
  >>> print(layer.beta.shape)
  (20, 30, 40)
  >>> print(layer.gamma.shape)
  (20, 30, 40)

  Note that other implementations of layer normalization may choose to define
  `gamma` and `beta` over a separate set of axes from the axes being
  normalized across. For example, Group Normalization
  ([Wu et al. 2018](https://arxiv.org/abs/1803.08494)) with group size of 1
  corresponds to a Layer Normalization that normalizes across height, width,
  and channel and has `gamma` and `beta` span only the channel dimension.
  So, this Layer Normalization implementation will not match a Group
  Normalization layer with group size set to 1.

  Args:
    axis: Integer or List/Tuple. The axis or axes to normalize across. Typically
      this is the features axis/axes. The left-out axes are typically the batch
      axis/axes. This argument defaults to `-1`, the last dimension in the
      input.
    epsilon: Small float added to variance to avoid dividing by zero. Defaults
      to 1e-3
    center: If True, add offset of `beta` to normalized tensor. If False, `beta`
      is ignored. Defaults to True.
    scale: If True, multiply by `gamma`. If False, `gamma` is not used. Defaults
      to True. When the next layer is linear (also e.g. `nn.relu`), this can be
      disabled since the scaling will be done by the next layer.
    beta_initializer: Initializer for the beta weight. Defaults to zeros.
    gamma_initializer: Initializer for the gamma weight. Defaults to ones.
    beta_regularizer: Optional regularizer for the beta weight. None by default.
    gamma_regularizer: Optional regularizer for the gamma weight. None by
      default.
    beta_constraint: Optional constraint for the beta weight. None by default.
    gamma_constraint: Optional constraint for the gamma weight. None by default.

  Input shape:
    Arbitrary. Use the keyword argument `input_shape` (tuple of
    integers, does not include the samples axis) when using this layer as the
    first layer in a model.

  Output shape:
    Same shape as input.

  Reference:
    - [Lei Ba et al., 2016](https://arxiv.org/abs/1607.06450).
  """

  def __init__(self,
               axis=-1,
               epsilon=1e-3,
               center=True,
               scale=True,
               beta_initializer='zeros',
               gamma_initializer='ones',
               beta_regularizer=None,
               gamma_regularizer=None,
               beta_constraint=None,
               gamma_constraint=None,
               **kwargs):
    super(LayerNormalization, self).__init__(**kwargs)
    if isinstance(axis, (list, tuple)):
      self.axis = axis[:]
    elif isinstance(axis, int):
      self.axis = axis
    else:
      raise TypeError('Expected an int or a list/tuple of ints for the '
                      'argument \'axis\', but received: %r' % axis)

    self.epsilon = epsilon
    self.center = center
    self.scale = scale
    self.beta_initializer = initializers.get(beta_initializer)
    self.gamma_initializer = initializers.get(gamma_initializer)
    self.beta_regularizer = regularizers.get(beta_regularizer)
    self.gamma_regularizer = regularizers.get(gamma_regularizer)
    self.beta_constraint = constraints.get(beta_constraint)
    self.gamma_constraint = constraints.get(gamma_constraint)

    self.supports_masking = True

    # Indicates whether a faster fused implementation can be used. This will be
    # set to True or False in build()"
    self._fused = None

  def _fused_can_be_used(self, ndims):
    """Returns false if fused implementation cannot be used.

    Check if the axis is contiguous and can be collapsed into the last axis.
    The self.axis is assumed to have no duplicates.
    """
    axis = sorted(self.axis)
    can_use_fused = False

    if axis[-1] == ndims - 1 and axis[-1] - axis[0] == len(axis) - 1:
      can_use_fused = True

    # fused_batch_norm will silently raise epsilon to be at least 1.001e-5, so
    # we cannot used the fused version if epsilon is below that value. Also, the
    # variable dtype must be float32, as fused_batch_norm only supports float32
    # variables.
    if self.epsilon < 1.001e-5 or self.dtype != 'float32':
      can_use_fused = False

    return can_use_fused

  def build(self, input_shape):
    ndims = len(input_shape)
    if ndims is None:
      raise ValueError('Input shape %s has undefined rank.' % input_shape)

    # Convert axis to list and resolve negatives
    if isinstance(self.axis, int):
      self.axis = [self.axis]
    elif isinstance(self.axis, tuple):
      self.axis = list(self.axis)
    for idx, x in enumerate(self.axis):
      if x < 0:
        self.axis[idx] = ndims + x

    # Validate axes
    for x in self.axis:
      if x < 0 or x >= ndims:
        raise ValueError('Invalid axis: %d' % x)
    if len(self.axis) != len(set(self.axis)):
      raise ValueError('Duplicate axis: {}'.format(tuple(self.axis)))

    param_shape = [input_shape[dim] for dim in self.axis]
    if self.scale:
      self.gamma = self.add_weight(
          name='gamma',
          shape=param_shape,
          initializer=self.gamma_initializer,
          regularizer=self.gamma_regularizer,
          constraint=self.gamma_constraint,
          trainable=True,
          experimental_autocast=False)
    else:
      self.gamma = None

    if self.center:
      self.beta = self.add_weight(
          name='beta',
          shape=param_shape,
          initializer=self.beta_initializer,
          regularizer=self.beta_regularizer,
          constraint=self.beta_constraint,
          trainable=True,
          experimental_autocast=False)
    else:
      self.beta = None

    self._fused = self._fused_can_be_used(ndims)

    self.built = True

  def call(self, inputs):
    # Compute the axes along which to reduce the mean / variance
    input_shape = inputs.shape
    ndims = len(input_shape)

    # Broadcasting only necessary for norm when the axis is not just
    # the last dimension
    broadcast_shape = [1] * ndims
    for dim in self.axis:
      broadcast_shape[dim] = input_shape.dims[dim].value

    def _broadcast(v):
      if (v is not None and len(v.shape) != ndims and self.axis != [ndims - 1]):
        return tf.reshape(v, broadcast_shape)
      return v

    if not self._fused:
      input_dtype = inputs.dtype
      if input_dtype in ('float16', 'bfloat16') and self.dtype == 'float32':
        # If mixed precision is used, cast inputs to float32 so that this is at
        # least as numerically stable as the fused version.
        inputs = tf.cast(inputs, 'float32')

      # Calculate the moments on the last axis (layer activations).
      mean, variance = tf.nn.moments(inputs, self.axis, keepdims=True)

      scale, offset = _broadcast(self.gamma), _broadcast(self.beta)

      # Compute layer normalization using the batch_normalization function.
      outputs = tf.nn.batch_normalization(
          inputs,
          mean,
          variance,
          offset=offset,
          scale=scale,
          variance_epsilon=self.epsilon)
      outputs = tf.cast(outputs, input_dtype)
    else:
      # Collapse dims before self.axis, and dims in self.axis
      pre_dim, in_dim = (1, 1)
      axis = sorted(self.axis)
      tensor_shape = tf.shape(inputs)
      for dim in range(0, ndims):
        dim_tensor = tensor_shape[dim]
        if dim < axis[0]:
          pre_dim = pre_dim * dim_tensor
        else:
          assert dim in axis
          in_dim = in_dim * dim_tensor

      squeezed_shape = [1, pre_dim, in_dim, 1]
      # This fused operation requires reshaped inputs to be NCHW.
      data_format = 'NCHW'

      inputs = tf.reshape(inputs, squeezed_shape)

      # self.gamma and self.beta have the wrong shape for fused_batch_norm, so
      # we cannot pass them as the scale and offset parameters. Therefore, we
      # create two constant tensors in correct shapes for fused_batch_norm and
      # later construct a separate calculation on the scale and offset.
      scale = tf.ones([pre_dim], dtype=self.dtype)
      offset = tf.zeros([pre_dim], dtype=self.dtype)

      # Compute layer normalization using the fused_batch_norm function.
      outputs, _, _ = tf.compat.v1.nn.fused_batch_norm(
          inputs,
          scale=scale,
          offset=offset,
          epsilon=self.epsilon,
          data_format=data_format)

      outputs = tf.reshape(outputs, tensor_shape)

      scale, offset = _broadcast(self.gamma), _broadcast(self.beta)

      if scale is not None:
        outputs = outputs * tf.cast(scale, outputs.dtype)
      if offset is not None:
        outputs = outputs + tf.cast(offset, outputs.dtype)

    # If some components of the shape got lost due to adjustments, fix that.
    outputs.set_shape(input_shape)

    return outputs

  def compute_output_shape(self, input_shape):
    return input_shape

  def get_config(self):
    config = {
        'axis': self.axis,
        'epsilon': self.epsilon,
        'center': self.center,
        'scale': self.scale,
        'beta_initializer': initializers.serialize(self.beta_initializer),
        'gamma_initializer': initializers.serialize(self.gamma_initializer),
        'beta_regularizer': regularizers.serialize(self.beta_regularizer),
        'gamma_regularizer': regularizers.serialize(self.gamma_regularizer),
        'beta_constraint': constraints.serialize(self.beta_constraint),
        'gamma_constraint': constraints.serialize(self.gamma_constraint)
    }
    base_config = super(LayerNormalization, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

Ancestors

  • Layer
  • tensorflow.python.module.module.Module
  • tensorflow.python.training.tracking.tracking.AutoTrackable
  • tensorflow.python.training.tracking.base.Trackable
  • LayerVersionSelector

Inherited members