Module keras.applications.vgg19
VGG19 model for Keras.
Reference
Expand source code
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=invalid-name
"""VGG19 model for Keras.
Reference:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
https://arxiv.org/abs/1409.1556) (ICLR 2015)
"""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.applications import imagenet_utils
from keras.engine import training
from keras.layers import VersionAwareLayers
from keras.utils import data_utils
from keras.utils import layer_utils
from tensorflow.python.util.tf_export import keras_export
WEIGHTS_PATH = ('https://storage.googleapis.com/tensorflow/keras-applications/'
'vgg19/vgg19_weights_tf_dim_ordering_tf_kernels.h5')
WEIGHTS_PATH_NO_TOP = ('https://storage.googleapis.com/tensorflow/'
'keras-applications/vgg19/'
'vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5')
layers = VersionAwareLayers()
@keras_export('keras.applications.vgg19.VGG19', 'keras.applications.VGG19')
def VGG19(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation='softmax'):
"""Instantiates the VGG19 architecture.
Reference:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
https://arxiv.org/abs/1409.1556) (ICLR 2015)
For image classification use cases, see
[this page for detailed examples](
https://keras.io/api/applications/#usage-examples-for-image-classification-models).
For transfer learning use cases, make sure to read the
[guide to transfer learning & fine-tuning](
https://keras.io/guides/transfer_learning/).
The default input size for this model is 224x224.
Note: each Keras Application expects a specific kind of input preprocessing.
For VGG19, call `tf.keras.applications.vgg19.preprocess_input` on your
inputs before passing them to the model.
`vgg19.preprocess_input` will convert the input images from RGB to BGR,
then will zero-center each color channel with respect to the ImageNet dataset,
without scaling.
Args:
include_top: whether to include the 3 fully-connected
layers at the top of the network.
weights: one of `None` (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor
(i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)`
(with `channels_last` data format)
or `(3, 224, 224)` (with `channels_first` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. `(200, 200, 3)` would be one valid value.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the
last convolutional block.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
classifier_activation: A `str` or callable. The activation function to use
on the "top" layer. Ignored unless `include_top=True`. Set
`classifier_activation=None` to return the logits of the "top" layer.
When loading pretrained weights, `classifier_activation` can only
be `None` or `"softmax"`.
Returns:
A `keras.Model` instance.
"""
if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded.')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
' as true, `classes` should be 1000')
# Determine proper input shape
input_shape = imagenet_utils.obtain_input_shape(
input_shape,
default_size=224,
min_size=32,
data_format=backend.image_data_format(),
require_flatten=include_top,
weights=weights)
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
# Block 1
x = layers.Conv2D(
64, (3, 3), activation='relu', padding='same', name='block1_conv1')(
img_input)
x = layers.Conv2D(
64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# Block 2
x = layers.Conv2D(
128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
x = layers.Conv2D(
128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
# Block 3
x = layers.Conv2D(
256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
x = layers.Conv2D(
256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
x = layers.Conv2D(
256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
x = layers.Conv2D(
256, (3, 3), activation='relu', padding='same', name='block3_conv4')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
# Block 4
x = layers.Conv2D(
512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
x = layers.Conv2D(
512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
x = layers.Conv2D(
512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
x = layers.Conv2D(
512, (3, 3), activation='relu', padding='same', name='block4_conv4')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
# Block 5
x = layers.Conv2D(
512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
x = layers.Conv2D(
512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
x = layers.Conv2D(
512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
x = layers.Conv2D(
512, (3, 3), activation='relu', padding='same', name='block5_conv4')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
if include_top:
# Classification block
x = layers.Flatten(name='flatten')(x)
x = layers.Dense(4096, activation='relu', name='fc1')(x)
x = layers.Dense(4096, activation='relu', name='fc2')(x)
imagenet_utils.validate_activation(classifier_activation, weights)
x = layers.Dense(classes, activation=classifier_activation,
name='predictions')(x)
else:
if pooling == 'avg':
x = layers.GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = layers.GlobalMaxPooling2D()(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = layer_utils.get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = training.Model(inputs, x, name='vgg19')
# Load weights.
if weights == 'imagenet':
if include_top:
weights_path = data_utils.get_file(
'vgg19_weights_tf_dim_ordering_tf_kernels.h5',
WEIGHTS_PATH,
cache_subdir='models',
file_hash='cbe5617147190e668d6c5d5026f83318')
else:
weights_path = data_utils.get_file(
'vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5',
WEIGHTS_PATH_NO_TOP,
cache_subdir='models',
file_hash='253f8cb515780f3b799900260a226db6')
model.load_weights(weights_path)
elif weights is not None:
model.load_weights(weights)
return model
@keras_export('keras.applications.vgg19.preprocess_input')
def preprocess_input(x, data_format=None):
return imagenet_utils.preprocess_input(
x, data_format=data_format, mode='caffe')
@keras_export('keras.applications.vgg19.decode_predictions')
def decode_predictions(preds, top=5):
return imagenet_utils.decode_predictions(preds, top=top)
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
mode='',
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE,
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
Functions
def VGG19(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation='softmax')
-
Instantiates the VGG19 architecture.
Reference: - Very Deep Convolutional Networks for Large-Scale Image Recognition (ICLR 2015)
For image classification use cases, see this page for detailed examples.
For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.
The default input size for this model is 224x224.
Note: each Keras Application expects a specific kind of input preprocessing. For VGG19, call
tf.keras.applications.vgg19.preprocess_input
on your inputs before passing them to the model.vgg19.preprocess_input
will convert the input images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling.Args
include_top
- whether to include the 3 fully-connected layers at the top of the network.
weights
- one of
None
(random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor
- optional Keras tensor
(i.e. output of
layers.Input()
) to use as image input for the model. input_shape
- optional shape tuple, only to be specified
if
include_top
is False (otherwise the input shape has to be(224, 224, 3)
(withchannels_last
data format) or(3, 224, 224)
(withchannels_first
data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g.(200, 200, 3)
would be one valid value. pooling
- Optional pooling mode for feature extraction
when
include_top
isFalse
. -None
means that the output of the model will be the 4D tensor output of the last convolutional block. -avg
means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. -max
means that global max pooling will be applied. classes
- optional number of classes to classify images
into, only to be specified if
include_top
is True, and if noweights
argument is specified. classifier_activation
- A
str
or callable. The activation function to use on the "top" layer. Ignored unlessinclude_top=True
. Setclassifier_activation=None
to return the logits of the "top" layer. When loading pretrained weights,classifier_activation
can only beNone
or"softmax"
.
Returns
A
keras.Model
instance.Expand source code
@keras_export('keras.applications.vgg19.VGG19', 'keras.applications.VGG19') def VGG19( include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation='softmax'): """Instantiates the VGG19 architecture. Reference: - [Very Deep Convolutional Networks for Large-Scale Image Recognition]( https://arxiv.org/abs/1409.1556) (ICLR 2015) For image classification use cases, see [this page for detailed examples]( https://keras.io/api/applications/#usage-examples-for-image-classification-models). For transfer learning use cases, make sure to read the [guide to transfer learning & fine-tuning]( https://keras.io/guides/transfer_learning/). The default input size for this model is 224x224. Note: each Keras Application expects a specific kind of input preprocessing. For VGG19, call `tf.keras.applications.vgg19.preprocess_input` on your inputs before passing them to the model. `vgg19.preprocess_input` will convert the input images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. Args: include_top: whether to include the 3 fully-connected layers at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. Returns: A `keras.Model` instance. """ if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as `"imagenet"` with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=224, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor # Block 1 x = layers.Conv2D( 64, (3, 3), activation='relu', padding='same', name='block1_conv1')( img_input) x = layers.Conv2D( 64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) # Block 2 x = layers.Conv2D( 128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) x = layers.Conv2D( 128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) # Block 3 x = layers.Conv2D( 256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x) x = layers.Conv2D( 256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x) x = layers.Conv2D( 256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x) x = layers.Conv2D( 256, (3, 3), activation='relu', padding='same', name='block3_conv4')(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) # Block 4 x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x) x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x) x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x) x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block4_conv4')(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) # Block 5 x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x) x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x) x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x) x = layers.Conv2D( 512, (3, 3), activation='relu', padding='same', name='block5_conv4')(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) if include_top: # Classification block x = layers.Flatten(name='flatten')(x) x = layers.Dense(4096, activation='relu', name='fc1')(x) x = layers.Dense(4096, activation='relu', name='fc2')(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense(classes, activation=classifier_activation, name='predictions')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D()(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = training.Model(inputs, x, name='vgg19') # Load weights. if weights == 'imagenet': if include_top: weights_path = data_utils.get_file( 'vgg19_weights_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH, cache_subdir='models', file_hash='cbe5617147190e668d6c5d5026f83318') else: weights_path = data_utils.get_file( 'vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models', file_hash='253f8cb515780f3b799900260a226db6') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model
def decode_predictions(preds, top=5)
-
Decodes the prediction of an ImageNet model.
Args
preds
- Numpy array encoding a batch of predictions.
top
- Integer, how many top-guesses to return. Defaults to 5.
Returns
A list of lists of top class prediction tuples
(class_name, class_description, score)
. One list of tuples per sample in batch input.Raises
ValueError
- In case of invalid shape of the
pred
array (must be 2D).
Expand source code
@keras_export('keras.applications.vgg19.decode_predictions') def decode_predictions(preds, top=5): return imagenet_utils.decode_predictions(preds, top=top)
def preprocess_input(x, data_format=None)
-
Preprocesses a tensor or Numpy array encoding a batch of images.
Usage example with
applications.MobileNet
:i = tf.keras.layers.Input([None, None, 3], dtype = tf.uint8) x = tf.cast(i, tf.float32) x = tf.keras.applications.mobilenet.preprocess_input(x) core = tf.keras.applications.MobileNet() x = core(x) model = tf.keras.Model(inputs=[i], outputs=[x]) image = tf.image.decode_png(tf.io.read_file('file.png')) result = model(image)
Args
x
- A floating point
numpy.array
or atf.Tensor
, 3D or 4D with 3 color channels, with values in the range [0, 255]. The preprocessed data are written over the input data if the data types are compatible. To avoid this behaviour,numpy.copy(x)
can be used. data_format
- Optional data format of the image tensor/array. Defaults to
None, in which case the global setting
tf.keras.backend.image_data_format()
is used (unless you changed it, it defaults to "channels_last").
Returns
Preprocessed
numpy.array
or atf.Tensor
with typefloat32
.The images are converted from RGB to BGR, then each color channel is zero-centered with respect to the ImageNet dataset, without scaling.
Raises
ValueError
- In case of unknown
data_format
argument.
Expand source code
@keras_export('keras.applications.vgg19.preprocess_input') def preprocess_input(x, data_format=None): return imagenet_utils.preprocess_input( x, data_format=data_format, mode='caffe')