Module keras.premade.linear

Built-in linear model classes.

Expand source code
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Built-in linear model classes."""

import tensorflow.compat.v2 as tf
from keras import activations
from keras import initializers
from keras import regularizers
from keras.engine import base_layer
from keras.engine import input_spec
from keras.engine import training
from keras.layers import core
from tensorflow.python.util.tf_export import keras_export


@keras_export('keras.experimental.LinearModel')
class LinearModel(training.Model):
  r"""Linear Model for regression and classification problems.

  This model approximates the following function:
  $$y = \beta + \sum_{i=1}^{N} w_{i} * x_{i}$$
  where $$\beta$$ is the bias and $$w_{i}$$ is the weight for each feature.

  Example:

  ```python
  model = LinearModel()
  model.compile(optimizer='sgd', loss='mse')
  model.fit(x, y, epochs=epochs)
  ```

  This model accepts sparse float inputs as well:

  Example:
  ```python
  model = LinearModel()
  opt = tf.keras.optimizers.Adam()
  loss_fn = tf.keras.losses.MeanSquaredError()
  with tf.GradientTape() as tape:
    output = model(sparse_input)
    loss = tf.reduce_mean(loss_fn(target, output))
  grads = tape.gradient(loss, model.weights)
  opt.apply_gradients(zip(grads, model.weights))
  ```

  """

  def __init__(self,
               units=1,
               activation=None,
               use_bias=True,
               kernel_initializer='zeros',
               bias_initializer='zeros',
               kernel_regularizer=None,
               bias_regularizer=None,
               **kwargs):
    """Create a Linear Model.

    Args:
      units: Positive integer, output dimension without the batch size.
      activation: Activation function to use.
        If you don't specify anything, no activation is applied.
      use_bias: whether to calculate the bias/intercept for this model. If set
        to False, no bias/intercept will be used in calculations, e.g., the data
        is already centered.
      kernel_initializer: Initializer for the `kernel` weights matrices.
      bias_initializer: Initializer for the bias vector.
      kernel_regularizer: regularizer for kernel vectors.
      bias_regularizer: regularizer for bias vector.
      **kwargs: The keyword arguments that are passed on to BaseLayer.__init__.
    """

    self.units = units
    self.activation = activations.get(activation)
    self.use_bias = use_bias
    self.kernel_initializer = initializers.get(kernel_initializer)
    self.bias_initializer = initializers.get(bias_initializer)
    self.kernel_regularizer = regularizers.get(kernel_regularizer)
    self.bias_regularizer = regularizers.get(bias_regularizer)
    super(LinearModel, self).__init__(**kwargs)
    base_layer.keras_premade_model_gauge.get_cell('Linear').set(True)

  def build(self, input_shape):
    if isinstance(input_shape, dict):
      names = sorted(list(input_shape.keys()))
      self.input_specs = []
      self.dense_layers = []
      for name in names:
        shape = input_shape[name]
        layer = core.Dense(
            units=self.units,
            use_bias=False,
            kernel_initializer=self.kernel_initializer,
            kernel_regularizer=self.kernel_regularizer,
            name=name)
        layer.build(shape)
        self.input_specs.append(
            input_spec.InputSpec(shape=shape, name=name))
        self.dense_layers.append(layer)
    elif isinstance(input_shape, (tuple, list)) and all(
        isinstance(shape, tf.TensorShape) for shape in input_shape):
      self.dense_layers = []
      for shape in input_shape:
        layer = core.Dense(
            units=self.units,
            use_bias=False,
            kernel_initializer=self.kernel_initializer,
            kernel_regularizer=self.kernel_regularizer)
        layer.build(shape)
        self.dense_layers.append(layer)
    else:
      # input_shape can be a single TensorShape or a tuple of ints.
      layer = core.Dense(
          units=self.units,
          use_bias=False,
          kernel_initializer=self.kernel_initializer,
          kernel_regularizer=self.kernel_regularizer)
      layer.build(input_shape)
      self.dense_layers = [layer]

    if self.use_bias:
      self.bias = self.add_weight(
          'bias',
          shape=self.units,
          initializer=self.bias_initializer,
          regularizer=self.bias_regularizer,
          dtype=self.dtype,
          trainable=True)
    else:
      self.bias = None
    self.built = True

  def call(self, inputs):
    result = None
    if isinstance(inputs, dict):
      names = [layer.name for layer in self.dense_layers]
      different_keys = set(names) - set(inputs.keys())
      if different_keys:
        raise ValueError(
            'The input dictionary does not match '
            'the structure expected by the model.'
            '\n\tExpected keys: {}'
            '\n\tReceived keys: {}'
            '\n\tMissing keys: {}'.format(set(names), set(inputs.keys()),
                                          different_keys))
      inputs = [inputs[name] for name in names]
      for inp, layer in zip(inputs, self.dense_layers):
        output = layer(inp)
        if result is None:
          result = output
        else:
          result += output
    elif isinstance(inputs, (tuple, list)):
      for inp, layer in zip(inputs, self.dense_layers):
        output = layer(inp)
        if result is None:
          result = output
        else:
          result += output
    else:
      result = self.dense_layers[0](inputs)

    if self.use_bias:
      result = tf.nn.bias_add(result, self.bias)
    if self.activation is not None:
      return self.activation(result)  # pylint: disable=not-callable
    return result

  def get_config(self):
    config = {
        'units': self.units,
        'activation': activations.serialize(self.activation),
        'use_bias': self.use_bias,
        'kernel_initializer': initializers.serialize(self.kernel_initializer),
        'bias_initializer': initializers.serialize(self.bias_initializer),
        'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
        'bias_regularizer': regularizers.serialize(self.bias_regularizer),
    }
    base_config = base_layer.Layer.get_config(self)
    return dict(list(base_config.items()) + list(config.items()))

  @classmethod
  def from_config(cls, config, custom_objects=None):
    del custom_objects
    return cls(**config)

Classes

class LinearModel (units=1, activation=None, use_bias=True, kernel_initializer='zeros', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, **kwargs)

Linear Model for regression and classification problems.

This model approximates the following function: $$y = \beta + \sum_{i=1}^{N} w_{i} * x_{i}$$ where $$\beta$$ is the bias and $$w_{i}$$ is the weight for each feature.

Example:

model = LinearModel()
model.compile(optimizer='sgd', loss='mse')
model.fit(x, y, epochs=epochs)

This model accepts sparse float inputs as well:

Example:

model = LinearModel()
opt = tf.keras.optimizers.Adam()
loss_fn = tf.keras.losses.MeanSquaredError()
with tf.GradientTape() as tape:
  output = model(sparse_input)
  loss = tf.reduce_mean(loss_fn(target, output))
grads = tape.gradient(loss, model.weights)
opt.apply_gradients(zip(grads, model.weights))

Create a Linear Model.

Args

units
Positive integer, output dimension without the batch size.
activation
Activation function to use. If you don't specify anything, no activation is applied.
use_bias
whether to calculate the bias/intercept for this model. If set to False, no bias/intercept will be used in calculations, e.g., the data is already centered.
kernel_initializer
Initializer for the kernel weights matrices.
bias_initializer
Initializer for the bias vector.
kernel_regularizer
regularizer for kernel vectors.
bias_regularizer
regularizer for bias vector.
**kwargs
The keyword arguments that are passed on to BaseLayer.init.
Expand source code
class LinearModel(training.Model):
  r"""Linear Model for regression and classification problems.

  This model approximates the following function:
  $$y = \beta + \sum_{i=1}^{N} w_{i} * x_{i}$$
  where $$\beta$$ is the bias and $$w_{i}$$ is the weight for each feature.

  Example:

  ```python
  model = LinearModel()
  model.compile(optimizer='sgd', loss='mse')
  model.fit(x, y, epochs=epochs)
  ```

  This model accepts sparse float inputs as well:

  Example:
  ```python
  model = LinearModel()
  opt = tf.keras.optimizers.Adam()
  loss_fn = tf.keras.losses.MeanSquaredError()
  with tf.GradientTape() as tape:
    output = model(sparse_input)
    loss = tf.reduce_mean(loss_fn(target, output))
  grads = tape.gradient(loss, model.weights)
  opt.apply_gradients(zip(grads, model.weights))
  ```

  """

  def __init__(self,
               units=1,
               activation=None,
               use_bias=True,
               kernel_initializer='zeros',
               bias_initializer='zeros',
               kernel_regularizer=None,
               bias_regularizer=None,
               **kwargs):
    """Create a Linear Model.

    Args:
      units: Positive integer, output dimension without the batch size.
      activation: Activation function to use.
        If you don't specify anything, no activation is applied.
      use_bias: whether to calculate the bias/intercept for this model. If set
        to False, no bias/intercept will be used in calculations, e.g., the data
        is already centered.
      kernel_initializer: Initializer for the `kernel` weights matrices.
      bias_initializer: Initializer for the bias vector.
      kernel_regularizer: regularizer for kernel vectors.
      bias_regularizer: regularizer for bias vector.
      **kwargs: The keyword arguments that are passed on to BaseLayer.__init__.
    """

    self.units = units
    self.activation = activations.get(activation)
    self.use_bias = use_bias
    self.kernel_initializer = initializers.get(kernel_initializer)
    self.bias_initializer = initializers.get(bias_initializer)
    self.kernel_regularizer = regularizers.get(kernel_regularizer)
    self.bias_regularizer = regularizers.get(bias_regularizer)
    super(LinearModel, self).__init__(**kwargs)
    base_layer.keras_premade_model_gauge.get_cell('Linear').set(True)

  def build(self, input_shape):
    if isinstance(input_shape, dict):
      names = sorted(list(input_shape.keys()))
      self.input_specs = []
      self.dense_layers = []
      for name in names:
        shape = input_shape[name]
        layer = core.Dense(
            units=self.units,
            use_bias=False,
            kernel_initializer=self.kernel_initializer,
            kernel_regularizer=self.kernel_regularizer,
            name=name)
        layer.build(shape)
        self.input_specs.append(
            input_spec.InputSpec(shape=shape, name=name))
        self.dense_layers.append(layer)
    elif isinstance(input_shape, (tuple, list)) and all(
        isinstance(shape, tf.TensorShape) for shape in input_shape):
      self.dense_layers = []
      for shape in input_shape:
        layer = core.Dense(
            units=self.units,
            use_bias=False,
            kernel_initializer=self.kernel_initializer,
            kernel_regularizer=self.kernel_regularizer)
        layer.build(shape)
        self.dense_layers.append(layer)
    else:
      # input_shape can be a single TensorShape or a tuple of ints.
      layer = core.Dense(
          units=self.units,
          use_bias=False,
          kernel_initializer=self.kernel_initializer,
          kernel_regularizer=self.kernel_regularizer)
      layer.build(input_shape)
      self.dense_layers = [layer]

    if self.use_bias:
      self.bias = self.add_weight(
          'bias',
          shape=self.units,
          initializer=self.bias_initializer,
          regularizer=self.bias_regularizer,
          dtype=self.dtype,
          trainable=True)
    else:
      self.bias = None
    self.built = True

  def call(self, inputs):
    result = None
    if isinstance(inputs, dict):
      names = [layer.name for layer in self.dense_layers]
      different_keys = set(names) - set(inputs.keys())
      if different_keys:
        raise ValueError(
            'The input dictionary does not match '
            'the structure expected by the model.'
            '\n\tExpected keys: {}'
            '\n\tReceived keys: {}'
            '\n\tMissing keys: {}'.format(set(names), set(inputs.keys()),
                                          different_keys))
      inputs = [inputs[name] for name in names]
      for inp, layer in zip(inputs, self.dense_layers):
        output = layer(inp)
        if result is None:
          result = output
        else:
          result += output
    elif isinstance(inputs, (tuple, list)):
      for inp, layer in zip(inputs, self.dense_layers):
        output = layer(inp)
        if result is None:
          result = output
        else:
          result += output
    else:
      result = self.dense_layers[0](inputs)

    if self.use_bias:
      result = tf.nn.bias_add(result, self.bias)
    if self.activation is not None:
      return self.activation(result)  # pylint: disable=not-callable
    return result

  def get_config(self):
    config = {
        'units': self.units,
        'activation': activations.serialize(self.activation),
        'use_bias': self.use_bias,
        'kernel_initializer': initializers.serialize(self.kernel_initializer),
        'bias_initializer': initializers.serialize(self.bias_initializer),
        'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
        'bias_regularizer': regularizers.serialize(self.bias_regularizer),
    }
    base_config = base_layer.Layer.get_config(self)
    return dict(list(base_config.items()) + list(config.items()))

  @classmethod
  def from_config(cls, config, custom_objects=None):
    del custom_objects
    return cls(**config)

Ancestors

Inherited members