Überspringen und zum Inhalt gehen →

Training Transformer Results deepseek-ai/deepseek-coder-1.3b-instruct

Base_model: deepseek-ai/deepseek-coder-1.3b-instruct
Training_data: javadoc_v0.3.json (363MB Javadoc Dataset)

DatasetDict({
    train: Dataset({
        features: ['output', 'input', 'instruction'],
        num_rows: 331686
    })
    test: Dataset({
        features: ['output', 'input', 'instruction'],
        num_rows: 17457
    })
})

LORA Finetuning


LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT= 0.05
LORA_TARGET_MODULES = [
    "q_proj",
    "v_proj",
    "k_proj",
    "o_proj"
]

WARMUP_STEPS = 100
OPTIM = "adamw_torch"
BATCH_SIZE = 128
MICRO_BATCH_SIZE = 8
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
LEARNING_RATE = 2e-4
TRAIN_STEPS = 4000

trainable params: 3,145,728
all params: 1,349,617,664
trainable%: 0.2330829007288393

{'train_runtime': 599660.8522, 'train_samples_per_second': 0.854, 'train_steps_per_second': 0.007, 'train_loss': 0.4703766193389893, 'epoch': 1.54}

Veröffentlicht in Allgemein